• Adler, R. F., and Coauthors, 2003: The Version-2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979–present). J. Hydrometeor., 4 , 11471167.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arkin, P. A., and Meisner B. N. , 1987: The relationship between large-scale convective rainfall and cold cloud over the Western Hemisphere during 1982–84. Mon. Wea. Rev., 115 , 5174.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ebert, E. E., 2005: Satellite vs. model rainfall—Which one to use? Fifth Int. Scientific Conf. on the Global Energy and Water Cycle, Orange County, CA, Global Energy and Water Experiment. [Available online at http://www.gewex.org/5thConfposterT6-7_Ebert.pdf.].

  • Ebert, E. E., Janowiak J. E. , and Kidd C. , 2007: Comparison of near-real-time precipitation estimates from satellite observations and numerical models. Bull. Amer. Meteor. Soc., in press.

    • Search Google Scholar
    • Export Citation
  • Gochis, D. J., Jimenez A. , Watts C. J. , Shuttleworth W. J. , and Garatuza-Payan J. , 2004: Analysis of 2002 and 2003 warm-season precipitation from the North American Monsoon Experiment Event Rain Gauge Network. Mon. Wea. Rev., 132 , 29382953.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haddad, Z. S., Short D. A. , Durden S. L. , Im E. , Hensley S. , Grable M. B. , and Black R. A. , 1997a: A new parameterization of the rain drop size distribution. IEEE Trans. Geosci. Remote Sens., 35 , 532539.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haddad, Z. S., Smith E. A. , Kummerow C. D. , Iguchi T. , Farrar M. R. , Durden S. L. , Alves M. , and Olson W. S. , 1997b: The TRMM “day-1” radar/radiometer combined rain-profiling algorithm. J. Meteor. Soc. Japan, 75 , 799809.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., 2005: Satellite-based estimation of precipitation using microwave sensors. Encyclopedia of Hydrological Sciences, M. G. Anderson, Ed., John Wiley and Sons, 965–980.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., Adler R. F. , Rudolf B. , Schneider U. , and Keehn P. R. , 1995: Global precipitation estimates based on a technique for combining satellite-based estimates, rain gauge analysis, and NWP model precipitation information. J. Climate, 8 , 12841295.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 1997: The Global Precipitation Climatology Project (GPCP) combined precipitation dataset. Bull. Amer. Meteor. Soc., 78 , 520.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., Adler R. F. , Morrissey M. , Bolvin D. T. , Curtis S. , Joyce R. , McGavock B. , and Susskind J. , 2001: Global precipitation at one-degree daily resolution from multisatellite observations. J. Hydrometeor., 2 , 3650.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janowiak, J. E., Joyce R. J. , and Yarosh Y. , 2001: A real-time global half-hourly pixel-resolution infrared dataset and its applications. Bull. Amer. Meteor. Soc., 82 , 205217.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joyce, R. J., and Ferraro R. R. , 2006: Improvements of CMORPH resulting from limb adjustments and normalization of AMSU-B rainfall. Preprints, 14th Conf. on Satellite Meteorology and Oceanography, Atlanta, GA, Amer. Meteor. Soc., CD-ROM, P1.22.

  • Joyce, R. J., Janowiak J. E. , Arkin P. A. , and Xie P. , 2004: CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeor., 5 , 487503.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Katsanos, D., Lagouvardos K. , Kotroni V. , and Huffman G. J. , 2004: Statistical evaluation of MPA-RT high-resolution precipitation estimates from satellite platforms over the central and eastern Mediterranean. Geophys. Res. Lett., 31 .L06116, doi:10.1029/2003GL019142.

    • Search Google Scholar
    • Export Citation
  • Kidd, C. K., Kniveton D. R. , Todd M. C. , and Bellerby T. J. , 2003: Satellite rainfall estimation using combined passive microwave and infrared algorithms. J. Hydrometeor., 4 , 10881104.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krajewski, W. F., and Smith J. A. , 1991: On the estimation of climatological ZR relationships. J. Appl. Meteor., 30 , 14361445.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kummerow, C., Olson W. S. , and Giglio L. , 1996: A simplified scheme for obtaining precipitation and vertical hydrometeor profiles from passive microwave sensors. IEEE Trans. Geosci. Remote Sens., 34 , 12131232.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Legates, D. R., 1987: Climatology of Global Precipitation. Publications in Climatology, Vol. 40, University of Delaware, 85 pp.

  • Marks, D. A., Wolff D. B. , Silberstein D. S. , Pippitt J. L. , and Wang J. , 2005: Improving radar rainfall estimates at Kwajalein Atoll, RMI through relative calibration adjustments. Preprints, 32d Conf. on Radar Meteorology, Albuquerque, NM, Amer. Meteor. Soc., CD-ROM, 3R.2.

  • McPhaden, M. J., and Coauthors, 1998: The tropical ocean global atmosphere (TOGA) observing system: A decade of progress. J. Geophys. Res., 103 , 1416914240.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, J. R., 1972: A climatological ZR relationship for convective storms in the northern Great Plains. Preprints, 15th Conf. on Radar Meteorology, Champaign–Urbana, IL, Amer. Meteor. Soc., 153–154.

  • Morrissey, M. L., and Greene J. S. , 1991: The Pacific atoll rain gauge dataset. Tech. Rep., Planetary Geosciences Division Contribution 648, University of Hawaii, 45 pp.

  • Negri, A. J., and Coauthors, 2005: The Hurricane–Flood–Landslide Continuum. Bull. Amer. Meteor. Soc., 86 , 12411247.

  • Olson, W. S., Kummerow C. D. , Hong Y. , and Tao W-K. , 1999: Atmospheric latent heating distributions in the Tropics derived from satellite passive microwave radiometer measurements. J. Appl. Meteor., 38 , 633664.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., Wolff D. B. , and Amitai E. , 1994: The window probability matching method for rainfall measurements with radar. J. Appl. Meteor., 33 , 682693.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rudolf, B., 1993: Management and analysis of precipitation data on a routine basis. Proceedings of International Symposium on Precipitation and Evaporation, Vol. 1, B. Sevruk and M. Lapin, Eds., Slovak Hydrometeorology Institution, 69–76.

  • Serra, Y. L., A’Hearn P. , Freitag P. , and McPhaden M. J. , 2001: ATLAS self-siphoning rain gauge error estimates. J. Atmos. Oceanic Technol., 18 , 19802001.

    • Search Google Scholar
    • Export Citation
  • Sevruk, B., 1989: Reliability of precipitation measurements. Proc. WMO/IAHS/ETH Workshop on Precipitation Measurements, St. Moritz, Switzerland, World Meteorological Organization, 13–19.

  • Silberstein, D. S., Wolff D. B. , Marks D. A. , and Pippitt J. L. , 2005: Using ground clutter to adjust relative radar calibration at Kwajalein, RMI. Preprints, 32d Conf. on Radar Meteorology, Albuquerque, NM, Amer. Meteor. Soc., CD-ROM, 3R.1.

  • Sorooshian, S., Hsu K-L. , Gao X. , Gupta H. V. , Imam B. , and Braithwaite D. , 2000: Evaluation of PERSIANN system satellite-based estimates of tropical rainfall. Bull. Amer. Meteor. Soc., 81 , 20352046.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turk, F. J., and Miller S. D. , 2005: Toward improving estimates of remotely sensed precipitation with MODIS/AMSR-E blended data techniques. IEEE Trans. Geosci. Remote Sens., 43 , 10591069.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turk, F. J., Bauer P. , Ebert E. , and Arkin P. A. , 2006: Satellite-derived precipitation verification activities within the International Precipitation Working Group (IPWG). Preprints, 14th Conf. on Satellite Meteorology and Oceanography, Atlanta, GA, Amer. Meteor. Soc., CD-ROM, P2.15.

  • Weng, F., Zhao L. , Ferraro R. , Poe G. , Li X. , and Grody N. , 2003: Advanced microwave sounding unit cloud and precipitation algorithms. Radio Sci., 38 , 80688079.

    • Search Google Scholar
    • Export Citation
  • Weymouth, G., Mills G. A. , Jones D. , Ebert E. E. , and Manton M. J. , 1999: A continental-scale daily rainfall analysis system. Aust. Meteor. Mag., 48 , 169179.

    • Search Google Scholar
    • Export Citation
  • Wolff, D. B., Marks D. A. , Amitai E. , Silberstein D. S. , Fisher B. L. , Tokay A. , Wang J. , and Pippitt J. L. , 2005: Ground validation for the Tropical Rainfall Measuring Mission (TRMM). J. Atmos. Oceanic Technol., 22 , 365380.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, P., and Arkin P. A. , 1996: Gauge-based monthly analysis of global land precipitation from 1971 to 1994. J. Geophys. Res., 101 , 1902319034.

  • Xie, P., Janowiak J. E. , Arkin P. A. , Adler R. F. , Gruber A. , Ferraro R. , Huffman G. J. , and Curtis S. , 2003: GPCP pentad precipitation analyses: An experimental dataset based on gauge observations and satellite estimates. J. Climate, 16 , 21972214.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, L., and Weng F. , 2002: Retrieval of ice cloud parameters using the Advanced Microwave Sounding Unit. J. Appl. Meteor., 41 , 384395.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 8012 3971 304
PDF Downloads 5339 2673 217

The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-Global, Multiyear, Combined-Sensor Precipitation Estimates at Fine Scales

View More View Less
  • 1 Laboratory for Atmospheres, NASA GSFC, Greenbelt, Maryland
  • | 2 Science Systems and Applications, Inc., Lanham, Maryland
  • | 3 Laboratory for Atmospheres, NASA GSFC, Greenbelt, Maryland
  • | 4 Laboratory for Atmospheres, NASA GSFC, Greenbelt, Maryland
  • | 5 Goddard Earth Sciences and Technology Center, University of Maryland, Baltimore County, Baltimore, Maryland
  • | 6 Texas A&M University, College Station, Texas
  • | 7 Global Change Data Center, NASA GSFC, Greenbelt, Maryland
Restricted access

Abstract

The Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) provides a calibration-based sequential scheme for combining precipitation estimates from multiple satellites, as well as gauge analyses where feasible, at fine scales (0.25° × 0.25° and 3 hourly). TMPA is available both after and in real time, based on calibration by the TRMM Combined Instrument and TRMM Microwave Imager precipitation products, respectively. Only the after-real-time product incorporates gauge data at the present. The dataset covers the latitude band 50°N–S for the period from 1998 to the delayed present. Early validation results are as follows: the TMPA provides reasonable performance at monthly scales, although it is shown to have precipitation rate–dependent low bias due to lack of sensitivity to low precipitation rates over ocean in one of the input products [based on Advanced Microwave Sounding Unit-B (AMSU-B)]. At finer scales the TMPA is successful at approximately reproducing the surface observation–based histogram of precipitation, as well as reasonably detecting large daily events. The TMPA, however, has lower skill in correctly specifying moderate and light event amounts on short time intervals, in common with other finescale estimators. Examples are provided of a flood event and diurnal cycle determination.

Corresponding author address: George J. Huffman, NASA GSFC, Code 613.1, Greenbelt, MD 20771. Email: huffman@agnes.gsfc.nasa.gov

Abstract

The Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) provides a calibration-based sequential scheme for combining precipitation estimates from multiple satellites, as well as gauge analyses where feasible, at fine scales (0.25° × 0.25° and 3 hourly). TMPA is available both after and in real time, based on calibration by the TRMM Combined Instrument and TRMM Microwave Imager precipitation products, respectively. Only the after-real-time product incorporates gauge data at the present. The dataset covers the latitude band 50°N–S for the period from 1998 to the delayed present. Early validation results are as follows: the TMPA provides reasonable performance at monthly scales, although it is shown to have precipitation rate–dependent low bias due to lack of sensitivity to low precipitation rates over ocean in one of the input products [based on Advanced Microwave Sounding Unit-B (AMSU-B)]. At finer scales the TMPA is successful at approximately reproducing the surface observation–based histogram of precipitation, as well as reasonably detecting large daily events. The TMPA, however, has lower skill in correctly specifying moderate and light event amounts on short time intervals, in common with other finescale estimators. Examples are provided of a flood event and diurnal cycle determination.

Corresponding author address: George J. Huffman, NASA GSFC, Code 613.1, Greenbelt, MD 20771. Email: huffman@agnes.gsfc.nasa.gov

Save