From Near-Surface to Root-Zone Soil Moisture Using Different Assimilation Techniques

Joaquín Muñoz Sabater GAME/CNRM, Météo-France, CNRS, Toulouse, France

Search for other papers by Joaquín Muñoz Sabater in
Current site
Google Scholar
PubMed
Close
,
Lionel Jarlan GAME/CNRM, Météo-France, CNRS, Toulouse, France

Search for other papers by Lionel Jarlan in
Current site
Google Scholar
PubMed
Close
,
Jean-Christophe Calvet GAME/CNRM, Météo-France, CNRS, Toulouse, France

Search for other papers by Jean-Christophe Calvet in
Current site
Google Scholar
PubMed
Close
,
François Bouyssel GAME/CNRM, Météo-France, CNRS, Toulouse, France

Search for other papers by François Bouyssel in
Current site
Google Scholar
PubMed
Close
, and
Patricia De Rosnay Centre d’Etudes Spatiales de la Biosphère, Toulouse, France

Search for other papers by Patricia De Rosnay in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Root-zone soil moisture constitutes an important variable for hydrological and weather forecast models. Microwave radiometers like the L-band instrument on board the European Space Agency’s (ESA) future Soil Moisture and Ocean Salinity (SMOS) mission are being designed to provide estimates of near-surface soil moisture (0–5 cm). This quantity is physically related to root-zone soil moisture through diffusion processes, and both surface and root-zone soil layers are commonly simulated by land surface models (LSMs). Observed time series of surface soil moisture may be used to analyze the root-zone soil moisture using data assimilation systems. In this paper, various assimilation techniques derived from Kalman filters (KFs) and variational methods (VAR) are implemented and tested. The objective is to correct the modeled root-zone soil moisture deficiencies of the newest version of the Interaction between Soil, Biosphere, and Atmosphere scheme (ISBA) LSM, using the observations of the surface soil moisture of the Surface Monitoring of the Soil Reservoir Experiment (SMOSREX) over a 4-yr period (2001–04). This time period includes contrasting climatic conditions. Among the different algorithms, the ensemble Kalman filter (EnKF) and a simplified one-dimensional variational data assimilation (1DVAR) show the best performances. The lower computational cost of the 1DVAR is an advantage for operational root-zone soil moisture analysis based on remotely sensed surface soil moisture observations at a global scale.

Corresponding author address: Jean-Christophe Calvet, Météo-France/CNRM/GMME/MC2, 42, Avenue Gaspard Coriolis, Toulouse CEDEX 1, 31057, France. Email: jean-christophe.calvet@meteo.fr

Abstract

Root-zone soil moisture constitutes an important variable for hydrological and weather forecast models. Microwave radiometers like the L-band instrument on board the European Space Agency’s (ESA) future Soil Moisture and Ocean Salinity (SMOS) mission are being designed to provide estimates of near-surface soil moisture (0–5 cm). This quantity is physically related to root-zone soil moisture through diffusion processes, and both surface and root-zone soil layers are commonly simulated by land surface models (LSMs). Observed time series of surface soil moisture may be used to analyze the root-zone soil moisture using data assimilation systems. In this paper, various assimilation techniques derived from Kalman filters (KFs) and variational methods (VAR) are implemented and tested. The objective is to correct the modeled root-zone soil moisture deficiencies of the newest version of the Interaction between Soil, Biosphere, and Atmosphere scheme (ISBA) LSM, using the observations of the surface soil moisture of the Surface Monitoring of the Soil Reservoir Experiment (SMOSREX) over a 4-yr period (2001–04). This time period includes contrasting climatic conditions. Among the different algorithms, the ensemble Kalman filter (EnKF) and a simplified one-dimensional variational data assimilation (1DVAR) show the best performances. The lower computational cost of the 1DVAR is an advantage for operational root-zone soil moisture analysis based on remotely sensed surface soil moisture observations at a global scale.

Corresponding author address: Jean-Christophe Calvet, Météo-France/CNRM/GMME/MC2, 42, Avenue Gaspard Coriolis, Toulouse CEDEX 1, 31057, France. Email: jean-christophe.calvet@meteo.fr

Save
  • Anderson, J. L., and Anderson S. L. , 1999: A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts. Mon. Wea. Rev., 127 , 27412758.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Balsamo, G., Bouyssel F. , and Noilhan J. , 2004: A simplified bi-dimensional variational analysis of soil moisture from screen-level observations in a mesoscale numerical weather-prediction model. Quart. J. Roy. Meteor. Soc., 130A , 895915.

    • Search Google Scholar
    • Export Citation
  • Balsamo, G., Mahfouf J-F. , Belair S. , and Deblonde G. , 2006: A global root-zone soil moisture analysis using simulated L-band brightness temperature in preparation for the Hydros satellite mission. J. Hydrometeor., 7 , 11261146.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beljaars, A. C. M., Viterbo P. , Miller M. J. , and Betts A. K. , 1996: The anomalous rainfall over the United States during 1993: Sensitivity to land surface parameterization and soil moisture anomalies. Mon. Wea. Rev., 124 , 362383.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bouttier, F., 1994: Sur la prévision de la qualité des prévisions météorologiques (On the assessment of the weather forecast quality). Ph.D dissertation, Université Paul Sabatier III, 240 pp. [Available from Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse CEDEX, France.].

  • Burgers, G., van Leeuwen P. J. , and Evensen G. , 1998: Analysis scheme in the ensemble Kalman filter. Mon. Wea. Rev., 126 , 17191724.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Calvet, J-C., and Noilhan J. , 2000: From near-surface to root-zone soil moisture using year-round data. J. Hydrometeor., 1 , 393411.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Calvet, J-C., and Soussana J. F. , 2001: Modelling CO2 enrichment effects using an interactive vegetation SVAT scheme. Agric. For. Meteor., 108 , 129152.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Calvet, J-C., Noilhan J. , and Bessemoulin P. , 1998a: Retrieving the root-zone soil moisture from surface soil moisture or temperature estimates: A feasibility study based on field measurements. J. Appl. Meteor., 37 , 371386.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Calvet, J-C., Noilhan J. , Roujean J-L. , Bessemoulin P. , Cabelguenne M. , Olioso A. , and Wigneron J-P. , 1998b: An interactive vegetation SVAT model tested against data from six contrasting sites. Agric. For. Meteor., 92 , 7395.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Calvet, J-C., and Coauthors, 1999: MUREX: A land-surface field experiment to study the annual cycle of the energy and water budgets. Ann. Geophys., 17 , 838854.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1977: A parameterization of ground-surface moisture content for use in atmospheric prediction models. J. Appl. Meteor., 16 , 11821185.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1978: Efficient prediction of ground temperature and moisture with inclusion of a layer of vegetation. J. Geophys. Res., 83 , 18891903.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • De Rosnay, P., and Coauthors, 2006: SMOSREX: A long term field campaign experiment for soil moisture and land surface processes remote sensing. Remote Sens. Environ., 102 , 377389.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., 2000: Using a global soil wetness dataset to improve seasonal climate simulation. J. Climate, 13 , 29002922.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Douville, H., Viterbo P. , Mahfouf J-F. , and Beljaars A. C. M. , 2000: Evaluation of the optimal interpolation and nudging techniques for soil moisture analysis using FIFE data. Mon. Wea. Rev., 128 , 17331756.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eagleman, J. R., and Lin W. C. , 1976: Remote sensing of soil moisture by a 21 cm passive radiometer. J. Geophys. Res., 81 , 36603666.

  • Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99 , 1014310162.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evensen, G., 2003: The ensemble Kalman filter: Theoretical formulation and practical implementation. Ocean Dyn., 53 , 343367.

  • François, C., Quesney A. , and Ottlé C. , 2003: Sequential assimilation of ERS-1 SAR data into a coupled land surface–hydrological model using an extended Kalman filter. J. Hydrometeor., 4 , 473487.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giard, D., and Bazile E. , 2000: Implementation of a new assimilation scheme for soil and surface variables in a global NWP model. Mon. Wea. Rev., 128 , 9971015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gibelin, A-L., Calvet J-C. , Roujean J-L. , Jarlan L. , and Los S. , 2006: Ability of the land surface model ISBA-A-gs to simulate leaf area index at the global scale: Comparison with satellites products. J. Geophys. Res., 111 .D18102, doi:10.1029/2005JD006691.

    • Search Google Scholar
    • Export Citation
  • Houser, P. R., Shuttleworth W. J. , Famiglietti J. S. , Gupta H. V. , Syed K. H. , and Goodrich D. C. , 1998: Integration of soil moisture remote sensing and hydrologic modeling using data assimilation. Water Resour. Res., 34 , 34053420.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalman, R. E., 1960: A new approach to linear filtering and prediction problems. Trans. ASME J. Basic Eng., 82 , 3545.

  • Kerr, Y. K., Waldteufel P. , Wigneron J-P. , Martinuzzi J. M. , Font J. , and Berger M. , 2001: Soil moisture retrieval from space: The Soil Moisture and Ocean Salinity (SMOS) mission. IEEE Trans. Geosci. Remote Sens., 39 , 17291735.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Suarez M. J. , 2003: Impact of land surface initialization on seasonal precipitation and temperature prediction. J. Hydrometeor., 4 , 408423.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, R. N., Carter E. F. , and Blue S. T. , 1999: Data assimilation into nonlinear stochastic models. Tellus, 51A , 167194.

  • Njoku, E. G., Jackson T. J. , Lakshmi V. , Chan T. K. , and Nghiem S. V. , 2003: Soil moisture retrieval from AMSR-E. IEEE Trans. Geosci. Remote Sens., 41 , 215229.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Noilhan, J., and Planton S. , 1989: A simple parameterization of land surface processes for meteorological models. Mon. Wea. Rev., 117 , 536549.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Noilhan, J., and Mahfouf J-F. , 1996: The ISBA land surface parameterisation scheme. Global Planet. Change, 13 , 145159.

  • Reichle, R. H., and Koster R. D. , 2003: Assessing the impact of horizontal error correlations in background fields on soil moisture estimation. J. Hydrometeor., 4 , 12291242.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reichle, R. H., Walker J. P. , Koster R. D. , and Houser P. R. , 2002: Extended versus ensemble Kalman filtering for land data assimilation. J. Hydrometeor., 3 , 728740.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seuffert, G., Wilker H. , Viterbo P. , Mahfouf J-F. , Drusch M. , and Calvet J-C. , 2003: Soil moisture analysis combining screen-level parameters and microwave brightness temperature: A test with field data. Geophys. Res. Lett., 30 .1498, doi:10.1029/2003GL017128.

    • Search Google Scholar
    • Export Citation
  • Shukla, J., and Mintz Y. , 1982: Influence of land-surface evapotranspiration on the Earth’s climate. Science, 215 , 14981501.

  • Teunissen, P. J. G., 2000: Adjustment Theory: An Introduction. Delft University Press, 194 pp.

  • Wagner, W., Scipal K. , Pathe C. , Gerten D. , Lucht W. , and Rudolf B. , 2003: Evaluation of the agreement between the first global remotely sensed soil moisture data with model and precipitation data. J. Geophys. Res., 108 , 46114626.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wigneron, J-P., Chanzy A. , Calvet J-C. , Olioso A. , and Kerr Y. , 2002: Modeling approaches to assimilating L-band passive microwave observations over land surfaces. J. Geophys. Res., 107 .4219, doi:10.1029/2001JD000958.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1006 272 25
PDF Downloads 753 194 18