Dynamic Calibration with an Ensemble Kalman Filter Based Data Assimilation Approach for Root-Zone Moisture Predictions

Nicola Montaldo Dipartimento di Ingegneria Idraulica, Ambientale, Infrastrutture Viarie, e del Rilevamento, Politecnico di Milano, Milan, and Dipartimento di Ingegneria del Territorio, Università di Cagliari, Cagliari, Italy

Search for other papers by Nicola Montaldo in
Current site
Google Scholar
PubMed
Close
,
John D. Albertson Department of Civil and Environmental Engineering, Pratt School of Engineering, Duke University, Durham, North Carolina

Search for other papers by John D. Albertson in
Current site
Google Scholar
PubMed
Close
, and
Marco Mancini Dipartimento di Ingegneria Idraulica, Ambientale, Infrastrutture Viarie, e del Rilevamento, Politecnico di Milano, Milan, Italy

Search for other papers by Marco Mancini in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In the presence of uncertain initial conditions and soil hydraulic properties, land surface model (LSM) performance can be significantly improved by the assimilation of periodic observations of certain state variables, such as the near-surface soil moisture (θg), as observed from a remote platform. In this paper the possibility of merging observations and the model optimally for providing robust predictions of root-zone soil moisture (θ2) is demonstrated. An assimilation approach that assimilates θg through the ensemble Kalman filter (EnKF) and provides a physics-based update of θ2 is developed. This approach, as with other common soil moisture assimilation approaches, may fail when a key LSM parameter, for example, the saturated hydraulic conductivity (ks), is estimated poorly. This leads to biased model errors producing a violation of a main assumption (model errors with zero mean) of the EnKF. For overcoming this model bias an innovative assimilation approach is developed that accepts this violation in the early model run times and dynamically calibrates all the components of the ks ensemble as a function of the persistent bias in root-zone soil moisture, allowing one to remove the model bias, restore the fidelity to the EnKF requirements, and reduce the model uncertainty. The robustness of the proposed approach is also examined in sensitivity analyses.

Corresponding author address: Nicola Montaldo, DIIAR, Fantoli Lab. Building, Politecnico di Milano, Piazza Leonardo da Vinci, 32 I-20133 Milan, Italy. Email: nicola.montaldo@polimi.it

Abstract

In the presence of uncertain initial conditions and soil hydraulic properties, land surface model (LSM) performance can be significantly improved by the assimilation of periodic observations of certain state variables, such as the near-surface soil moisture (θg), as observed from a remote platform. In this paper the possibility of merging observations and the model optimally for providing robust predictions of root-zone soil moisture (θ2) is demonstrated. An assimilation approach that assimilates θg through the ensemble Kalman filter (EnKF) and provides a physics-based update of θ2 is developed. This approach, as with other common soil moisture assimilation approaches, may fail when a key LSM parameter, for example, the saturated hydraulic conductivity (ks), is estimated poorly. This leads to biased model errors producing a violation of a main assumption (model errors with zero mean) of the EnKF. For overcoming this model bias an innovative assimilation approach is developed that accepts this violation in the early model run times and dynamically calibrates all the components of the ks ensemble as a function of the persistent bias in root-zone soil moisture, allowing one to remove the model bias, restore the fidelity to the EnKF requirements, and reduce the model uncertainty. The robustness of the proposed approach is also examined in sensitivity analyses.

Corresponding author address: Nicola Montaldo, DIIAR, Fantoli Lab. Building, Politecnico di Milano, Piazza Leonardo da Vinci, 32 I-20133 Milan, Italy. Email: nicola.montaldo@polimi.it

Save
  • Albertson, J. D., and Kiely G. , 2001: On the structure of soil moisture time series in the context of Land Surface Models. J. Hydrol., 243 , 101119.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Albertson, J. D., and Montaldo N. , 2003: Temporal dynamics of soil moisture variability: 1. Theoretical basis. Water Resour. Res., 39 .1274, doi:10.1029/2002WR001616.

    • Search Google Scholar
    • Export Citation
  • Altese, E., Bolognani O. , Mancini M. , and Troch P. A. , 1996: Retrieving soil moisture over bare soil from ERS-1 synthetic aperture radar data: Sensitivity analysis based on a theoretical surface scattering model and field data. Water Resour. Res., 32 , 653661.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buizza, R., Miller M. , and Palmer T. N. , 1999: Stochastic representation of model uncertainties in the ECMWF ensemble prediction system. Quart. J. Roy. Meteor. Soc., 125 , 28872908.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Catlin, D. E., 1989: Estimation, Control, and the Discrete Kalman Filter. Springer, 274 pp.

  • Clapp, R. B., and Hornberger G. M. , 1978: Empirical equations for some soil hydraulic properties. Water Resour. Res., 14 , 601604.

  • Crow, W. T., 2003: Correcting land surface model predictions for the impact of temporally sparse rainfall rate measurements using an ensemble Kalman filter and surface brightness temperature observations. J. Hydrometeor., 4 , 960973.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crow, W. T., and Wood E. F. , 2003: The assimilation of remotely sensed soil brightness temperature imagery into a land surface model using ensemble Kalman filtering: A case study based on ESTAR measurements during SGP97. Adv. Water Resour., 26 , 137149.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunne, S., and Entekhabi D. , 2005: An ensemble-based reanalysis approach to land data assimilation. Water Resour. Res., 41 .W02013, doi:10.1029/2004WR003449.

    • Search Google Scholar
    • Export Citation
  • Entekhabi, D., Rodriguez-Iturbe I. , and Castelli F. , 1996: Mutual interaction of soil moisture state and atmospheric processes. J. Hydrol., 184 , 317.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Entekhabi, D., and Coauthors, 2004: The hydrosphere state (Hydros) satellite mission: An earth system pathfinder for global mapping of soil moisture and land freeze/thaw. IEEE Trans. Geosci. Remote Sens., 42 , 21842195.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte-Carlo methods to forecast error statistics. J. Geophys. Res., 99 , C5. 1014310162.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evensen, G., 2003: The ensemble Kalman filter: Theoretical formulation and practical implementation. Ocean Dyn., 53 , 343367.

  • Francois, C., Quesney A. , and Ottle C. , 2003: Sequential assimilation of ERS-1 SAR data into a coupled land surface–hydrological model using an extended Kalman filter. J. Hydrometeor., 4 , 473487.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heathman, G. C., Starks P. J. , Ahuja L. R. , and Jackson T. J. , 2003: Assimilation of surface soil moisture to estimate profile soil water content. J. Hydrol., 279 , 117.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoeben, R., and Troch P. A. , 2000: Assimilation of active microwave observation data for soil moisture profile estimation. Water Resour. Res., 36 , 28052819.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holah, N., Baghdadi N. , Zribi M. , Bruand A. , and King C. , 2005: Potential of ASAR/ENVISAT for the characterization of soil surface parameters over bare agricultural fields. Remote Sens. Environ., 96 , 7886.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houser, P., Shuttleworth W. , Famiglietti J. , Gupta H. , Syed K. , and Goodrich D. , 1998: Integration of soil moisture remote sensing and hydrological modeling using data assimilation. Water Resour. Res., 34 , 34053420.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, Z., and Islam S. , 1995: Prediction of ground surface temperature and soil moisture content by the force-restore method. Water Resour. Res., 31 , 25312539.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jackson, T. J., 1980: Profile soil moisture from surface measurements. J. Irrig. Drain. Div., Proc. Amer. Soc. Civ. Eng., 106 , IR2. 8192.

    • Search Google Scholar
    • Export Citation
  • Jackson, T. J., 1997: Soil moisture estimation using Special Satellite Microwave/Imager satellite data over a grassland region. Water Resour. Res., 33 , 14751484.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lo Seen, D., Chebouni A. , Njoku E. , Saatchi S. , Mougin E. , and Monteny B. , 1997: An approach to couple vegetation functioning and soil-vegetation-atmosphere-transfer models for semiarid grasslands using the HAPEX-Sahel experiment. Agric. For. Meteor., 83 , 4974.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mancini, M., Hoeben R. , and Troch P. A. , 1999: Multifrequency radar observations of bare surface soil moisture content: A laboratory experiment. Water Resour. Res., 35 , 18271838.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Margulis, S. A., McLaughlin D. , Entekhabi D. , and Dunne S. , 2002: Land data assimilation and estimation of soil moisture using measurements from the Southern Great Plains 1997 Field Experiment. Water Resour. Res., 38 .1299, doi:10.1029/2001WR001114.

    • Search Google Scholar
    • Export Citation
  • McLaughlin, D., 1995: Recent developments in hydrologic data assimilation. Rev. Geophys., 33 , 977984.

  • Minasny, B., and McBratney A. B. , 2000: Evaluation and development of hydraulic conductivity pedotransfer functions for Australian soil. Aust. J. Soil Res., 38 , 905926.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montaldo, N., and Albertson J. D. , 2001: On the use of the force–restore SVAT model formulation for stratified soils. J. Hydrometeor., 2 , 571578.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montaldo, N., and Albertson J. D. , 2003: Multi-scale assimilation of surface soil moisture data for robust root zone moisture predictions. Adv. Water Resour., 26 , 3344.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montaldo, N., Albertson J. D. , Mancini M. , and Kiely G. , 2001: Robust prediction of root zone soil moisture from assimilation of surface soil moisture. Water Resour. Res., 37 , 28892900.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moradkhani, H., Hsu K. L. , Gupta H. , and Sorooshian S. , 2005a: Uncertainty assessment of hydrologic model states and parameters: Sequential data assimilation using the particle filter. Water Resour. Res., 41 .W05012, doi:10.1029/2004WR003604.

    • Search Google Scholar
    • Export Citation
  • Moradkhani, H., Sorooshian S. , Gupta H. , and Houser P. R. , 2005b: Dual state-parameter estimation of hydrological models using ensemble Kalman filter. Adv. Water Resour., 28 , 135147.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nash, J. E., and Sutcliffe J. V. , 1970: River flow forecasting through the conceptual models, Part 1: A discussion of principles. J. Hydrol., 10 , 282290.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newton, R. W., Heilman J. L. , and Van Bavel C. H. M. , 1983: Integrating passive microwave measurements with a soil moisture/heat flow model. Agric. Water Manage., 7 , 379389.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Noilhan, J., and Planton S. , 1989: A simple parameterization of land surface processes for meteorological models. Mon. Wea. Rev., 117 , 536549.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Noilhan, J., and Mahfouf J-F. , 1996: The ISBA land surface parameterization scheme. Global Planet. Change, 13 , 145159.

  • Parada, L. M., and Liang X. , 2004: Optimal multiscale Kalman filter for assimilation of near-surface soil moisture into land surface models. J. Geophys. Res., 109 .D24109, doi:10.1029/2004JD004745.

    • Search Google Scholar
    • Export Citation
  • Rawls, W. J., Brakensiek D. L. , and Saxton K. E. , 1982: Estimation of soil water properties. Trans. ASAE, 25 , 13161320.

  • Reichle, R. H., Walker J. P. , Koster R. D. , and Houser P. R. , 2002: Extended versus ensemble Kalman filtering for land data assimilation. J. Hydrometeor., 3 , 728740.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reichle, R. H., Koster R. D. , Dong J. R. , and Berg A. A. , 2004: Global soil moisture from satellite observations, land surface models, and ground data: Implications for data assimilation. J. Hydrometeor., 5 , 430442.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schapp, M. G., and Leij F. J. , 2000: Improved prediction of unsaturated hydraulic conductivity with the Mualem-van Genuchten model. Soil Sci. Soc. Amer. J., 64 , 843851.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walker, J. P., Willgoose G. R. , and Kalma J. D. , 2001: One-dimensional soil moisture profile retrieval by assimilation of near-surface observation: A comparison of retrieval algorithms. Adv. Water Resour., 24 , 631650.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Western, A. W., Grayson R. B. , and Blöschl G. , 2002: Scaling of soil moisture: A hydrologic perspective. Annu. Rev. Earth Planet. Sci., 30 , 149180.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wigneron, J-P., Olioso A. , Calvet J-C. , and Bertuzzi P. , 1999: Estimating root zone soil moisture from surface soil moisture data and soil-vegetation-atmosphere transfer modeling. Water Resour. Res., 35 , 37353745.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 742 543 44
PDF Downloads 156 44 5