Melting of Snow Cover in a Tropical Mountain Environment in Bolivia: Processes and Modeling

Yves Lejeune Centre d’Etude de la Neige, Météo-France/CNRM, Saint Martin d’Hères, France

Search for other papers by Yves Lejeune in
Current site
Google Scholar
PubMed
Close
,
Ludovic Bouilloud Centre d’Etude de la Neige, Météo-France/CNRM, Saint Martin d’Hères, France

Search for other papers by Ludovic Bouilloud in
Current site
Google Scholar
PubMed
Close
,
Pierre Etchevers Centre d’Etude de la Neige, Météo-France/CNRM, Saint Martin d’Hères, France

Search for other papers by Pierre Etchevers in
Current site
Google Scholar
PubMed
Close
,
Patrick Wagnon Great Ice, Laboratoire de Glaciologie et de Géophysique de l’Environnement, Institut de Recherche pour le Développement, Saint Martin d’Hères, France

Search for other papers by Patrick Wagnon in
Current site
Google Scholar
PubMed
Close
,
Pierre Chevallier Great Ice, Maison des Sciences de l’Eau, Institut de Recherche pour le Développement, Montpellier, France

Search for other papers by Pierre Chevallier in
Current site
Google Scholar
PubMed
Close
,
Jean-Emmanuel Sicart Great Ice, Maison des Sciences de l’Eau, Institut de Recherche pour le Développement, Montpellier, France

Search for other papers by Jean-Emmanuel Sicart in
Current site
Google Scholar
PubMed
Close
,
Eric Martin Météo-France/CNRM/GMME, Toulouse, France

Search for other papers by Eric Martin in
Current site
Google Scholar
PubMed
Close
, and
Florence Habets UMR-SISYPHE ENSMP, Fontainebleau, France

Search for other papers by Florence Habets in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

To determine the physical processes involved in the melting and disappearance of transient snow cover in nonglacierized tropical areas, the CROCUS snow model, interactions between Soil–Biosphere–Atmosphere (ISBA) land surface model, and coupled ISBA/CROCUS model have been applied to a full set of meteorological data recorded at 4795 m MSL on a moraine area in Bolivia (16°17′S, 68°32′W) between 14 May 2002 and 15 July 2003. The models have been adapted to tropical conditions, in particular the high level of incident solar radiation throughout the year. As long as a suitable function is included to represent the mosaic partitioning of the surface between snow cover and bare ground and local fresh snow grain type (as graupel) is adapted, the ISBA and ISBA/CROCUS models can accurately simulate snow behavior over nonglacierized natural surfaces in the Tropics. Incident solar radiation is responsible for efficient melting of the snow surface (favored by fresh snow albedo values usually not exceeding 0.8) and also for the energy stored in snow-free areas (albedo = 0.18) and transferred horizontally to adjacent snow patches. These horizontal energy transfers (by conduction within the upper soil layers and by turbulent advection) explain most of the snowmelt and prevent the snow cover from lasting more than a few days during the wet season in this high-altitude tropical environment.

Corresponding author address: Yves Lejeune, Centre d’Etude de la Neige, Météo-France, 1441 rue de la Piscine, 38400 Saint Martin d’Hères, France. Email: yves.lejeune@meteo.fr

Abstract

To determine the physical processes involved in the melting and disappearance of transient snow cover in nonglacierized tropical areas, the CROCUS snow model, interactions between Soil–Biosphere–Atmosphere (ISBA) land surface model, and coupled ISBA/CROCUS model have been applied to a full set of meteorological data recorded at 4795 m MSL on a moraine area in Bolivia (16°17′S, 68°32′W) between 14 May 2002 and 15 July 2003. The models have been adapted to tropical conditions, in particular the high level of incident solar radiation throughout the year. As long as a suitable function is included to represent the mosaic partitioning of the surface between snow cover and bare ground and local fresh snow grain type (as graupel) is adapted, the ISBA and ISBA/CROCUS models can accurately simulate snow behavior over nonglacierized natural surfaces in the Tropics. Incident solar radiation is responsible for efficient melting of the snow surface (favored by fresh snow albedo values usually not exceeding 0.8) and also for the energy stored in snow-free areas (albedo = 0.18) and transferred horizontally to adjacent snow patches. These horizontal energy transfers (by conduction within the upper soil layers and by turbulent advection) explain most of the snowmelt and prevent the snow cover from lasting more than a few days during the wet season in this high-altitude tropical environment.

Corresponding author address: Yves Lejeune, Centre d’Etude de la Neige, Météo-France, 1441 rue de la Piscine, 38400 Saint Martin d’Hères, France. Email: yves.lejeune@meteo.fr

Save
  • Barnett, T. P., Adam J. C. , and Lettenmaier D. P. , 2005: Potential impacts of a warming climate on water availability in snow-dominated regions. Nature, 438 , 303309.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bazile, E., 1999: Soil water freezing in ISBA. HIRLAM Newsletter, No. 33, 92–95.

  • Boone, A., and Etchevers P. , 2001: An intercomparison of three snow schemes of varying complexity coupled to the same land surface and macroscale hydrologic models. J. Hydrometeor., 2 , 374394.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boone, A., Masson V. , Meyers T. , and Noilhan J. , 2000: The influence of the inclusion of soil freezing on simulations by a soil–atmosphere–transfer scheme. J. Appl. Meteor., 39 , 15441569.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bouilloud, L., and Martin E. , 2006: A coupled model to simulate snow behavior on roads. J. Appl. Meteor. Climatol., 45 , 500516.

  • Bradley, R. S., Keimig F. T. , and Diaz H. F. , 2004: Projected temperature changes along the American Cordillera and the planned GCOS Network. Geophys. Res. Lett., 31 .L16210, doi:10.1029/2004GL020229.

    • Search Google Scholar
    • Export Citation
  • Brun, E., Martin E. , Simon V. , Gendre C. , and Coleou C. , 1989: An energy and mass model of snow cover suitable for operational avalanche forecasting. J. Glaciol., 35 , 333342.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brun, E., David P. , Sudul M. , and Brunot G. , 1992: A numerical model to simulate snow-cover stratigraphy for operational avalanche forecasting. J. Glaciol., 38 , 1322.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brun, E., Spiridonov V. , and Martin E. , 1994: Intégration d’un modèle de neige muti-couches dans ARPEGE: Interêts, approche méthodologique et premiers résultats. Proc. Atelier de Modélisation de l’Atmosphère du CNRM, Météo-France, Toulouse, France, Météo-France/CNRM, 133–140.

  • Caballero, Y., Chevallier P. , Gallaire R. , and Pillco R. , 2004: Flow modelling in a high mountain valley equipped with hydropower plants: Rio Zongo Valley–Cordillera Real–Bolivia. Hydrol. Processes, 18 , 939957.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chevallier, P., Pouyaud B. , and Suarez W. , 2004: Climate change impact on the water resources from the mountains in Peru. Proc. OECD Global Forum on Sustainable Development: Development and Climate Change, Paris, France, OECD, 11 pp. [Available online at http://www.oecd.org/dataoecd/37/20/34692989.pdf.].

  • Dang, H., Genthon C. , and Martin E. , 1997: Numerical modeling of snow cover over polar ice sheets. Ann. Glaciol., 25 , 170176.

  • Durand, Y., Giraud G. , and Mérindol L. , 1998: Short-term numerical avalanche forecast used operationally at Météo-France over the Alps and Pyrenees. Ann. Glaciol., 26 , 357366.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durand, Y., Giraud G. , Brun E. , Mérindol L. , and Martin E. , 1999: A computer-based system simulating snowpack structures as a tool for regional avalanche forecasting. J. Glaciol., 45 , 469484.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Essery, R., and Pomeroy J. , 2004: Implications of spatial distributions of snow mass and melt rate for snow-cover depletion: Theoretical considerations. Ann. Glaciol., 38 , 261265.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Essery, R., Granger R. , and Pomeroy J. , 2006: Boundary layer growth and advection of heat over snow and soil patches: Modelling and parametrization. Hydrol. Processes, 20 , 953967.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Etchevers, P., 2000: Modélisation de la phase continentale du cycle de l’eau à l’échelle régionale: Impact de la modélisation de la neige sur l’hydrologie du Rhône. Ph.D. thesis, Université Paul Sabatier Toulouse III, 361 pp.

  • Etchevers, P., and Coauthors, 2003: Validation of the surface energy budget simulated by several snow models (SNOWMIP project). Ann. Glaciol., 38 , 150158.

    • Search Google Scholar
    • Export Citation
  • Favier, V., Wagnon P. , and Ribstein P. , 2004: Glaciers of the inner and outer Tropics: A different behavior but a common response to climatic forcing. Geophys. Res. Lett., 31 .L16403, doi:10.1029/2004GL020654.

    • Search Google Scholar
    • Export Citation
  • Francou, B., Vuille M. , Wagnon P. , Mendoza J. , and Sicart J. E. , 2003: Tropical climate change recorded by a glacier in the central Andes during the last decades of the 20th century: Chacaltaya, Bolivia, 16°S. J. Geophys. Res., 108 .1179, doi:10.1029/2002GL014870.

    • Search Google Scholar
    • Export Citation
  • Garreaud, R. D., 2000: Intraseasonal variability of moisture and rainfall over South American Altiplano. Mon. Wea. Rev., 128 , 33373346.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gerbaux, M., Genthon C. , Etchevers P. , Vincent C. , and Dedieu J. P. , 2005: Surface mass balance of glaciers in the French Alps: Distributed modeling and sensitivity to climate change. J. Glaciol., 51 , 561572.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Granger, R. J., Essery R. , and Pomeroy J. W. , 2006: Boundary layer growth over snow and soil patches: Field observations. Hydrol. Processes, 20 , 943951.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Habets, F., Boone A. , and Noilhan J. , 2003: Simulation of a Scandinavian Basin using the diffusion transfer version of ISBA. Gobal Planet. Change, 38 , 137149.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaser, G., 2001: Glacier–climate interaction at low latitudes. J. Glaciol., 47 , 195204.

  • Kaser, G., and Osmaston H. , 2002: Tropical Glaciers. International Hydrology Series, UNESCO and Cambridge University Press, 207 pp.

  • Lejeune, Y., L’Hôte Y. , and Chevallier P. , 2003: Instrumentation et constitution d’une base de données météorologiques et nivologiques dans les Andes; Station Charquini, 4795 m, Bolivie. Météo-France/CNRM, Note de Centre 21, 63 pp. [Available online at http://www.mpl.ird.fr/hydrologie/pch/documents/PNRH01-37/pdf/PNRH0137_note_charquini.pdf.].

  • Lejeune, Y., L’Hôte Y. , Etchevers P. , Wagnon P. , Chazarin J. P. , and Chevallier P. , 2006: Constitution d’une Base de Données Météorologiques sur un Site Andin de Haute Altitude: Le Site du Charquini, 4795 m, Bolivie. IAHS Red Book Series, IAHS Press, in press.

  • L’Hôte, Y., Chevallier P. , Coudrain A. , Lejeune Y. , and Etchevers P. , 2005: Relationship between precipitation and air temperature: Comparison between the Bolivian Andes and the Swiss Alps. Hydrol. Sci. J., 50 , 989997.

    • Search Google Scholar
    • Export Citation
  • Liston, G. E., and Sturm M. , 1998: A snow-transport model for complex terrain. J. Glaciol., 44 , 498516.

  • Mölg, T., and Hardy D. R. , 2004: Ablation and associated energy balance of a horizontal glacier surface on Kilimanjaro. J. Geophys. Res., 109 .D16104, doi:10.1029/2003JD004338.

    • Search Google Scholar
    • Export Citation
  • Noilhan, J., and Planton S. , 1989: A simple parametrization of land surface processes for meteorological models. Mon. Wea. Rev., 117 , 536549.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Noilhan, J., and Mahfouf J-F. , 1996: The ISBA land surface parameterization scheme. Global Planet. Change, 13 , 145159.

  • Peters-Lidard, C. D., Blackburn E. , Liang X. , and Wood E. F. , 1998: The effect of soil thermal conductivity parametrization on surface energy fluxes and temperatures. J. Atmos. Sci., 55 , 12091224.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pomeroy, J. W., Gray D. M. , Shook F. R. , Toth B. , Essery R. L. H. , Pietroniro A. , and Hedstrom N. , 1998: An evaluation of snow accumulation and ablation processes for land surface modeling. Hydrol. Processes, 12 , 23392367.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roesch, A., Wild M. , Gilgen H. , and Ohmura A. , 2001: A new snow cover fraction parametrization for the ECHAM4 GCM. Climate Dyn., 17 , 933946.

  • Rousseau, D., 1980: A new skill score for the evaluation of yes/no forecasts. Proc. WMO Symp. on Probalistic and Statistical Methods in Weather Forecasting, Nice, France, World Meteorological Organization, 167–174.

  • Sicart, J. E., Wagnon P. , and Ribstein P. , 2005: Atmospheric controls of the heat balance of Zongo Glacier (16°S, Bolivia). J. Geophys. Res., 110 .D12106, doi:10.1029/2004JD005732.

    • Search Google Scholar
    • Export Citation
  • Takahara, H., and Higuchi K. , 1985: Thermal modification of air moving over melting snow surfaces. Ann. Glaciol., 6 , 235237.

  • Thompson, L. G., Mosley-Thompson E. , Davis M. E. , Lin P-N. , Henderson K. , and Mashiotta T. A. , 2003: Tropical glacier and ice core evidence of climate change on annual to millennial time scales. Climatic Change, 59 , 137155.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vuille, M., Bradley R. S. , and Keimig F. , 2000: Interannual climate variability in the central Andes and its relation to tropical Pacific and Atlantic forcing. J. Geophys. Res., 105 , D10. 1244712460.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wagnon, P., Ribstein P. , Francou B. , and Sicart J. E. , 2001: Anomalous heat and mass budget of Zongo Glacier, Bolivia during the 1997–98 El Niño year. J. Glaciol., 47 , 2128.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1385 755 79
PDF Downloads 357 57 8