The Partitioning of Evapotranspiration into Transpiration, Soil Evaporation, and Canopy Evaporation in a GCM: Impacts on Land–Atmosphere Interaction

David M. Lawrence National Center for Atmospheric Research, * Boulder, Colorado

Search for other papers by David M. Lawrence in
Current site
Google Scholar
PubMed
Close
,
Peter E. Thornton National Center for Atmospheric Research, * Boulder, Colorado

Search for other papers by Peter E. Thornton in
Current site
Google Scholar
PubMed
Close
,
Keith W. Oleson National Center for Atmospheric Research, * Boulder, Colorado

Search for other papers by Keith W. Oleson in
Current site
Google Scholar
PubMed
Close
, and
Gordon B. Bonan National Center for Atmospheric Research, * Boulder, Colorado

Search for other papers by Gordon B. Bonan in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Although the global partitioning of evapotranspiration (ET) into transpiration, soil evaporation, and canopy evaporation is not well known, most current land surface schemes and the few available observations indicate that transpiration is the dominant component on the global scale, followed by soil evaporation and canopy evaporation. The Community Land Model version 3 (CLM3), however, does not reflect this global view of ET partitioning, with soil evaporation and canopy evaporation far outweighing transpiration. One consequence of this unrealistic ET partitioning in CLM3 is that photosynthesis, which is linked to transpiration through stomatal conductance, is significantly underestimated on a global basis. A number of modifications to CLM3 vegetation and soil hydrology parameterizations are described that improve ET partitioning and reduce an apparent dry soil bias in CLM3. The modifications reduce canopy interception and evaporation, reduce soil moisture stress on transpiration, increase transpiration through a more realistic canopy integration scheme, reduce within-canopy soil evaporation, eliminate lateral drainage of soil water, increase infiltration of water into the soil, and increase the vertical redistribution of soil water. The partitioning of ET is improved, with notable increases seen in transpiration (13%–41% of global ET) and photosynthesis (65–148 Pg C yr−1). Soils are wetter and exhibit a far more distinct soil moisture annual cycle and greater interseasonal soil water storage, which permits plants to sustain transpiration through the dry season.

The broader influences of improved ET partitioning on land–atmosphere interaction are diverse. Stronger transpiration and reduced canopy evaporation yield an extended ET response to rain events and a shift in the precipitation distribution toward more frequent small- to medium-size rain events. Soil moisture memory time scales decrease particularly at deeper soil levels. Subsurface soil moisture exerts a slightly greater influence on precipitation. These results indicate that partitioning of ET is an important responsibility for land surface schemes, a responsibility that will gain in relevance as GCMs evolve to incorporate ever more complex treatments of the earth’s carbon and hydrologic cycles.

* The National Center for Atmospheric Research is sponsored by the National Science Foundation

Corresponding author address: David M. Lawrence, NCAR, P.O. Box 3000, Boulder, CO 80307-3000. Email: dlawren@ucar.edu

Abstract

Although the global partitioning of evapotranspiration (ET) into transpiration, soil evaporation, and canopy evaporation is not well known, most current land surface schemes and the few available observations indicate that transpiration is the dominant component on the global scale, followed by soil evaporation and canopy evaporation. The Community Land Model version 3 (CLM3), however, does not reflect this global view of ET partitioning, with soil evaporation and canopy evaporation far outweighing transpiration. One consequence of this unrealistic ET partitioning in CLM3 is that photosynthesis, which is linked to transpiration through stomatal conductance, is significantly underestimated on a global basis. A number of modifications to CLM3 vegetation and soil hydrology parameterizations are described that improve ET partitioning and reduce an apparent dry soil bias in CLM3. The modifications reduce canopy interception and evaporation, reduce soil moisture stress on transpiration, increase transpiration through a more realistic canopy integration scheme, reduce within-canopy soil evaporation, eliminate lateral drainage of soil water, increase infiltration of water into the soil, and increase the vertical redistribution of soil water. The partitioning of ET is improved, with notable increases seen in transpiration (13%–41% of global ET) and photosynthesis (65–148 Pg C yr−1). Soils are wetter and exhibit a far more distinct soil moisture annual cycle and greater interseasonal soil water storage, which permits plants to sustain transpiration through the dry season.

The broader influences of improved ET partitioning on land–atmosphere interaction are diverse. Stronger transpiration and reduced canopy evaporation yield an extended ET response to rain events and a shift in the precipitation distribution toward more frequent small- to medium-size rain events. Soil moisture memory time scales decrease particularly at deeper soil levels. Subsurface soil moisture exerts a slightly greater influence on precipitation. These results indicate that partitioning of ET is an important responsibility for land surface schemes, a responsibility that will gain in relevance as GCMs evolve to incorporate ever more complex treatments of the earth’s carbon and hydrologic cycles.

* The National Center for Atmospheric Research is sponsored by the National Science Foundation

Corresponding author address: David M. Lawrence, NCAR, P.O. Box 3000, Boulder, CO 80307-3000. Email: dlawren@ucar.edu

Save
  • Adler, R. F., and Coauthors, 2003: The Version-2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979–present). J. Hydrometeor., 4 , 11471167.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allen, S. J., 1990: Measurement and estimation of evaporation from soil under sparse barley crops in northern Syria. Agric. For. Meteor., 49 , 291309.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ashktorab, H., Pruitt W. O. , and Paw U K. T. , 1994: Partitioning of evapotranspiration using lysimeter and micro-Bowen ratio system. J. Irrig. Drain Eng., 120 , 450464.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baldocchi, D. D., Xu L. K. , and Kiang N. , 2004: How plant functional-type, weather, seasonal drought, and soil physical properties alter water and energy fluxes of an oak-grass savanna and an annual grassland. Agric. For. Meteor., 123 , 1339.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beven, K., 1984: Infiltration into a class of vertically non-uniform soils. Hydro. Sci. J., 29 , 425434.

  • Black, T. A., and Coauthors, 1996: Annual cycles of water vapour and carbon dioxide fluxes in and above a boreal aspen forest. Global Change Biol., 2 , 219229.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bonan, G. B., 1996: A land surface model (LSM version 1.0) for ecological, hydrological, and atmospheric studies: Technical description and user’s guide. NCAR Tech. Note NCAR/TN-417+STR, 150 pp.

  • Bonan, G. B., and Levis S. , 2006: Evaluating aspects of the Community Land and Atmosphere Models (CLM3 and CAM3) using a Dynamic Global Vegetation Model. J. Climate, 19 , 22902301.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bonan, G. B., Oleson K. W. , Vertenstein M. , Levis S. , Zeng X. B. , Dai Y. J. , Dickinson R. E. , and Yang Z. L. , 2002: The land surface climatology of the community land model coupled to the NCAR community climate model. J. Climate, 15 , 31233149.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Choudhury, B. J., and DiGirolamo N. E. , 1998: A biophysical process-based estimate of global land surface evaporation using satellite and ancillary data. I. Model description and comparison with observations. J. Hydrol., 205 , 164185.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Choudhury, B. J., DiGirolamo N. E. , Susskind J. , Darnell W. L. , Gupta S. K. , and Asrar G. , 1998: A biophysical process-based estimate of global land surface evaporation using satellite and ancillary data. II. Regional and global patterns of seasonal and annual variations. J. Hydrol., 205 , 186204.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collins, W. D., and Coauthors, 2006: The formulation and atmospheric simulation of the Community Atmosphere Model version 3 (CAM3). J. Climate, 19 , 21442161.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, A. G., and Trenberth K. E. , 2002: Estimates of freshwater discharge from continents: Latitudinal and seasonal variations. J. Hydrometeor., 3 , 660687.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, A. G., Trenberth K. E. , and Qian T. , 2004: A global dataset of Palmer Drought Severity Index for 1870–2002: Relationship with soil moisture and effects of surface warming. J. Hydrometeor., 5 , 11171130.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dickinson, R. E., Oleson K. W. , Bonan G. , Hoffman F. , Thornton P. , Vertenstein M. , Yang Z-L. , and Zeng X. , 2006: The Community Land Model and its climate statistics as a component of the Community Climate System Model. J. Climate, 19 , 23022324.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., Gao X. , Zha M. , Guo Z. , Oki T. , and Hanasaki N. , 2005: The second Global Soil Wetness Project (GSWP-2): Multi-model analysis and implications for our perception of the land surface. COLA Tech. Rep. 185, 46 pp.

  • Elsenbeer, H., Cassel K. , and Castro J. , 1992: Spatial analysis of soil hydraulic conductivity in a tropical rain forest catchment. Water Resour. Res., 28 , 32013214.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Essery, R., Best M. , and Cox P. , 2001: MOSES 2.2 technical documentation. Hadley Centre Tech. Note 30, 30 pp. [Available online at http://www.metoffice.gov.uk/research/hadleycentre/pubs/HCTN/index.html.].

  • Fekete, B. M., Vorosmarty C. J. , and Grabs W. , 2002: High-resolution fields of global runoff combining observed river discharge and simulated water balances. Global Biogeochem. Cycles, 3 .1042, doi:10.1029/1999GB001254.

    • Search Google Scholar
    • Export Citation
  • Ferretti, D. F., Pendall E. , Morgan J. A. , Nelson J. A. , LeCain D. , and Mosier A. R. , 2003: Partitioning evapotranspiration fluxes from a Colorado grassland using stable isotopes: Seasonal variations and ecosystem implications of elevated atmospheric CO2. Plant Soil, 254 , 291303.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gash, J. H. C., Nobre C. A. , Roberts J. , and Victoria R. , 1996: An overview of ABRACOS. Amazonian Deforestation and Climate, J. H. C. Gash et al., Eds., John Wiley, 1–14.

    • Search Google Scholar
    • Export Citation
  • Guo, Z., and Coauthors, 2006: GLACE: The Global Land–Atmosphere Coupling Experiment. Part II: Analysis. J. Hydrometeor., 7 , 611625.

  • Hack, J. J., Caron J. M. , Yeager S. G. , Oleson K. W. , Holland M. M. , Truesdale J. E. , and Rasch P. J. , 2006: Simulation of the global hydrological cycle in the CCSM Community Atmosphere Model version 3 (CAM3): Mean features. J. Climate, 19 , 21992221.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Herbst, M., Kappen L. , Thamm F. , and Vanselow R. , 1996: Simultaneous measurements of transpiration, soil evaporation and total evaporation in a maize field in northern Germany. J. Exp. Bot., 47 , 19571962.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hodnett, M. G., Oyama M. D. , Tomasella J. , and Marqeus Filho Ade O. , 1996: Comparisons of long-term soil water storage behavior under pasture and forest in three areas of Amazonia. Amazonian Climate and Deforestation, J. H. C. Gash, Ed., John Wiley, 57–78.

    • Search Google Scholar
    • Export Citation
  • Hollinger, S. E., and Isard S. A. , 1994: A soil moisture climatology of Illinois. J. Climate, 7 , 822833.

  • Koster, R. D., and Suarez M. J. , 2001: Soil moisture memory in climate models. J. Hydrometeor., 2 , 558570.

  • Koster, R. D., and Coauthors, 2006: GLACE: The Global Land–Atmosphere Coupling Experiment. Part I: Overview. J. Hydrometeor., 7 , 590610.

  • Leuning, R., Condon A. G. , Dunin F. X. , Zegelin S. , and Denmead O. T. , 1994: Rainfall interception and evaporation from soil below a wheat canopy. Agric. For. Meteor., 67 , 221238.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Q., and Dickinson R. E. , 2003: Use of a two-mode soil pore size distribution to estimate soil water transport in a land surface model. Geophys. Res. Lett., 30 .1331, doi:10.1029/2002GL016562.

    • Search Google Scholar
    • Export Citation
  • Malhi, Y., Pegoraro E. , Nobre A. D. , Pereira M. G. P. , Grace J. , Culf A. D. , and Clement R. , 2002: Energy and water dynamics of a central Amazonian rain forest. J. Geophys. Res., 107 .8061, doi:10.1029/2001JD000623.

    • Search Google Scholar
    • Export Citation
  • Nobre, C. A., Fisch G. , da Rocha H. R. , Lyra R. F. F. , da Rocha E. P. , and Ubarana B. N. , 1996: Observations of the atmospheric boundary layer in Rondônia. Amazonian Deforestation and Climate, J. H. C. Gash et al., Eds., John Wiley, 413–424.

    • Search Google Scholar
    • Export Citation
  • Oleson, K. W., and Coauthors, 2004: Technical description of the community land model (CLM). NCAR Tech. Note NCAR/TN-461+STR, 174 pp.

  • Osborn, T. J., Hulme M. , Jones P. D. , and Basnett T. A. , 2000: Observed trends in the daily intensity of United Kingdom precipitation. Int. J. Climatol., 20 , 347364.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qian, T., Dai A. , Trenberth K. E. , and Oleson K. W. , 2006: Simulation of global land surface conditions from 1948 to 2002. Part I: Forcing data and evaluations. J. Hydrometeor., 7 , 953975.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robock, A., Vinnikov K. Y. , Srinivasan G. , Entin J. K. , Hollinger S. E. , Speranskaya N. A. , Liu S. X. , and Namkhai A. , 2000: The Global Soil Moisture Data Bank. Bull. Amer. Meteor. Soc., 81 , 12811299.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schlesinger, W. H., 1997: Biogeochemistry: An Analysis of Global Change. 2d ed. Academic Press, 588 pp.

  • Schulze, E. D., Kelliher F. M. , Korner C. , Lloyd J. , and Leuning R. , 1994: Relationships among maximum stomatal conductance, ecosystem surface conductance, carbon assimilation rate, and plant nitrogen nutrition: A global ecology scaling exercise. Annu. Rev. Ecol. Syst., 25 , 629659.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shuttleworth, W. J., 1988: Evaporation from Amazonian rainforest. Proc. Roy. Soc. London, 233 , 321346.

  • Thornton, P. E., and Zimmerman N. , 2007: An improved canopy integration scheme for a land surface model with prognostic canopy structure. J. Climate, 20 , 39023923.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vinnikov, K. Ya, and Yeserkepova I. B. , 1991: Soil moisture: Empirical data and model results. J. Climate, 4 , 6679.

  • Wallace, J. S., Lloyd C. R. , and Sivakumar M. V. K. , 1993: Measurements of soil, plant and total evaporation from millet in Niger. Agric. For. Meteor., 63 , 149169.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Werth, D., and Avissar R. , 2004: The regional evapotranspiration of the Amazon. J. Hydrometeor., 5 , 100109.

  • Williams, D. G., and Coauthors, 2004: Evapotranspiration components determined by stable isotope, sap flow and eddy covariance techniques. Agric. For. Meteor., 125 , 241258.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Willmott, C. J., and Matsuura K. , cited. 2000: Terrestrial air temperature and precipitation: Monthly and annual climatologies. [Available online at http://climate.geog.udel.edu/~climate.].

  • Wilson, K. B., Hanson P. J. , Mulholland P. J. , Baldocchi D. D. , and Wullschleger S. D. , 2001: A comparison of methods for determining forest evapotranspiration and its components: Sap-flow, soil water budget, eddy covariance and catchment water balance. Agric. For. Meteor., 106 , 153168.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, W. R., and Dickinson R. E. , 2004: Time scales of layered soil moisture memory in the context of land–atmosphere interaction. J. Climate, 17 , 27522764.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yunusa, I. A. M., Walker R. R. , and Guy J. R. , 1997: Partitioning of seasonal evapotranspiration from a commercial furrow irrigated Sultana vineyard. Irrig. Sci., 18 , 4554.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zeng, X., Dickinson R. E. , Barlage M. , Dai Y. , Wang G. , and Oleson K. , 2005: Treatment of undercanopy turbulence in land models. J. Climate, 18 , 50865094.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 5801 2298 187
PDF Downloads 3599 732 63