Precipitation Extremes Estimated by GPCP and TRMM: ENSO Relationships

Scott Curtis Atmospheric Science Laboratory, Department of Geography, East Carolina University, Greenville, North Carolina

Search for other papers by Scott Curtis in
Current site
Google Scholar
PubMed
Close
,
Ahmed Salahuddin Coastal Resources Management, Atmospheric Science Laboratory, Department of Geography, East Carolina University, Greenville, North Carolina

Search for other papers by Ahmed Salahuddin in
Current site
Google Scholar
PubMed
Close
,
Robert F. Adler NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Robert F. Adler in
Current site
Google Scholar
PubMed
Close
,
George J. Huffman Science Systems and Applications, Inc., NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by George J. Huffman in
Current site
Google Scholar
PubMed
Close
,
Guojun Gu Goddard Earth Science and Technology Center, NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Guojun Gu in
Current site
Google Scholar
PubMed
Close
, and
Yang Hong Goddard Earth Science and Technology Center, NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Yang Hong in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Global monthly and daily precipitation extremes are examined in relation to the El Niño–Southern Oscillation phenomenon. For each month around the annual cycle and in each 2.5° grid block, extremes in the Global Precipitation Climatology Project dataset are defined as the top five (wet) and bottom five (dry) mean rain rates from 1979 to 2004. Over the tropical oceans El Niño–Southern Oscillation events result in a spatial redistribution and overall increase in extremes. Restricting the analysis to land shows that El Niño is associated with an increase in frequency of dry extremes and a decrease in wet extremes resulting in no change in net extreme months. During La Niña an increase in frequency of dry extremes and no change in wet extremes are observed. Thus, because of the juxtaposition of tropical land areas with the ascending branches of the global Walker Circulation, El Niño (La Niña) contributes to generally dry (wet) conditions in these land areas.

In addition, daily rain rates computed from the Tropical Rainfall Measuring Mission Multisatellite Precipitation Analysis are used to define extreme precipitation frequency locally as the number of days within a given season that exceeded the 95th percentile of daily rainfall for all seasons (1998–2005). During this period, the significant relationships between extreme daily precipitation frequency and Niño-3.4 in the Tropics are spatially similar to the significant relationships between seasonal mean rainfall and Niño-3.4. However, to address the shortness of the record extreme daily precipitation frequency is also related to seasonal rainfall for the purpose of identifying regions where positive seasonal rainfall anomalies can be used as proxies for extreme events. Finally, the longer (1979–2005) but coarser Global Precipitation Climatology Project analysis is reexamined to pinpoint regions likely to experience an increase in extreme precipitation during El Niño–Southern Oscillation events. Given the significance of El Niño–Southern Oscillation predictions, this information will enable the efficient use of resources in preparing for and mitigating the adverse effects of extreme precipitation.

Corresponding author address: Dr. Scott Curtis, Atmospheric Science Laboratory, Department of Geography, East Carolina University, Brewster A232, Greenville, NC 27858. Email: curtisw@ecu.edu

This article included in the The Global Energy and Water Cycle Experiment (GEWEX) special collection.

Abstract

Global monthly and daily precipitation extremes are examined in relation to the El Niño–Southern Oscillation phenomenon. For each month around the annual cycle and in each 2.5° grid block, extremes in the Global Precipitation Climatology Project dataset are defined as the top five (wet) and bottom five (dry) mean rain rates from 1979 to 2004. Over the tropical oceans El Niño–Southern Oscillation events result in a spatial redistribution and overall increase in extremes. Restricting the analysis to land shows that El Niño is associated with an increase in frequency of dry extremes and a decrease in wet extremes resulting in no change in net extreme months. During La Niña an increase in frequency of dry extremes and no change in wet extremes are observed. Thus, because of the juxtaposition of tropical land areas with the ascending branches of the global Walker Circulation, El Niño (La Niña) contributes to generally dry (wet) conditions in these land areas.

In addition, daily rain rates computed from the Tropical Rainfall Measuring Mission Multisatellite Precipitation Analysis are used to define extreme precipitation frequency locally as the number of days within a given season that exceeded the 95th percentile of daily rainfall for all seasons (1998–2005). During this period, the significant relationships between extreme daily precipitation frequency and Niño-3.4 in the Tropics are spatially similar to the significant relationships between seasonal mean rainfall and Niño-3.4. However, to address the shortness of the record extreme daily precipitation frequency is also related to seasonal rainfall for the purpose of identifying regions where positive seasonal rainfall anomalies can be used as proxies for extreme events. Finally, the longer (1979–2005) but coarser Global Precipitation Climatology Project analysis is reexamined to pinpoint regions likely to experience an increase in extreme precipitation during El Niño–Southern Oscillation events. Given the significance of El Niño–Southern Oscillation predictions, this information will enable the efficient use of resources in preparing for and mitigating the adverse effects of extreme precipitation.

Corresponding author address: Dr. Scott Curtis, Atmospheric Science Laboratory, Department of Geography, East Carolina University, Brewster A232, Greenville, NC 27858. Email: curtisw@ecu.edu

This article included in the The Global Energy and Water Cycle Experiment (GEWEX) special collection.

Save
  • Adler, R. F., Huffman G. J. , Bolvin D. T. , Curtis S. , and Nelkin E. J. , 2000: Tropical rainfall distributions determined using TRMM combined with other satellite and rain gauge information. J. Appl. Meteor., 39 , 20072023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adler, R. F., and Coauthors, 2003a: The version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4 , 11471167.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adler, R. F., Kummerow C. , Bolvin D. , Curtis S. , and Kidd C. , 2003b: Status of TRMM monthly estimates of tropical precipitation. Cloud Systems, Hurricanes, and the Tropical Rainfall Measuring Mission (TRMM), Meteor. Monogr., No. 51, Amer. Meteor. Soc., 223–234.

    • Crossref
    • Export Citation
  • Bartlett, M. S., 1935: Some aspects of the time-correlation problem in regard to tests of significance. J. Roy. Stat. Soc., 98A , 536543.

    • Search Google Scholar
    • Export Citation
  • Carvalho, L. M. V., Jones C. , and Liebmann B. , 2002: Extreme precipitation events in southeastern South America and large-scale convective patterns in the South Atlantic convergence zone. J. Climate, 15 , 23772394.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carvalho, L. M. V., Jones C. , and Liebmann B. , 2004: The South Atlantic convergence zone: Intensity, form, persistence, and relationships with intraseasonal to interannual activity and extreme rainfall. J. Climate, 17 , 88108.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cavazos, T., and Rivas D. , 2004: Variability of extreme precipitation events in Tijuana, Mexico. Climate Res., 25 , 229242.

  • Curtis, S., and Adler R. F. , 2003: Evolution of El Niño-precipitation relationships from satellites and gauges. J. Geophys. Res., 108 .4153, doi:10.1029/2002JD002690.

    • Search Google Scholar
    • Export Citation
  • Curtis, S., Adler R. F. , Huffman G. J. , Gu G. , Bolvin D. T. , and Nelkin E. J. , 2006: Comments on “El Niño: Catastrophe or opportunity.”. J. Climate, 19 , 64396442.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, A., and Wigley T. M. L. , 2000: Global patterns of ENSO-induced precipitation. Geophys. Res. Lett., 27 , 12831286.

  • Dai, A., Fung I. Y. , and Del Genio A. D. , 1997: Surface observed global land precipitation variations during 1900–88. J. Climate, 10 , 29432962.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Easterling, D. R., Evans J. L. , Groisman P. Ya , Karl T. R. , Kunkel K. E. , and Ambenje P. , 2000: Observed variability and trends in extreme climate events: A brief review. Bull. Amer. Meteor. Soc., 81 , 417425.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fauchereau, N., Trzaska S. , Rouault M. , and Richard Y. , 2003: Rainfall variability and changes in Southern Africa during the 20th century in the global warming context. Nat. Hazards, 29 , 139154.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gershunov, A., and Barnett T. P. , 1998: ENSO influence on intraseasonal extreme rainfall and temperature frequencies in the contiguous United States: Observations and model results. J. Climate, 11 , 15751586.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gershunov, A., and Cayan D. R. , 2003: Heavy daily precipitation frequency over the contiguous United States: Sources of climatic variability and seasonal predictability. J. Climate, 16 , 27522765.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goddard, L., and Dilley M. , 2005: El Niño: Catastrophe or opportunity. J. Climate, 18 , 651665.

  • Gu, G., Adler R. F. , Huffman G. J. , and Curtis S. , 2007: Tropical rainfall variability on interannual-to-interdecadal and longer time scales derived from the GPCP monthly product. J. Climate, 20 , 40334046.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haddad, Z. S., Meagher J. P. , Adler R. F. , Smith E. A. , and Durden S. L. , 2004: Global variability of precipitation according to the Tropical Rainfall Measuring Mission. J. Geophys. Res., 109 .D17103, doi:10.1029/2004JD004607.

    • Search Google Scholar
    • Export Citation
  • Haylock, M. R., and Coauthors, 2006: Trends in total and extreme South American rainfall in 1960–2000 and links with sea surface temperature. J. Climate, 19 , 14901512.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houghton, J. T., Ding Y. , Griggs D. J. , Noguer M. , van der Linden P. J. , Dai X. , Maskell K. , and Johnson C. A. , 2001: Climate Change 2001: The Scientific Basis. Cambridge University Press, 881 pp.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., Adler R. F. , Morrissey M. , Bolvin D. T. , Curtis S. , Joyce R. , McGavock B. , and Susskind J. , 2001: Global precipitation at one-degree daily resolution from multisatellite observations. J. Hydrometeor., 2 , 3650.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., Adler R. F. , Bolvin D. T. , Gu G. , Nelkin E. J. , Bowman K. P. , Stocker E. F. , and Wolff D. B. , 2007: The TRMM multisatellite precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scale. J. Hydrometeor., 8 , 3855.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Katz, R. W., and Brown B. G. , 1992: Extreme events in a changing climate: Variability is more important than averages. Climatic Change, 21 , 289302.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kharin, V. V., and Zwiers F. W. , 2000: Changes in extremes in an ensemble of transient climate simulations with a coupled atmosphere–ocean GCM. J. Climate, 13 , 37603788.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • L’Heureux, M. L., Mann M. E. , Cook B. I. , Gleason B. E. , and Vose R. S. , 2004: Atmospheric circulation influences on seasonal precipitation patterns in Alaska during the latter 20th century. J. Geophys. Res., 109 .D06106, doi:10.1029/2003JD003845.

    • Search Google Scholar
    • Export Citation
  • Liebmann, B., Jones C. , and Carvalho L. M. V. , 2001: Interannual variability of daily extreme precipitation events in the state of Sao Paulo, Brazil. J. Climate, 14 , 208218.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lyon, B., and Barnston A. G. , 2005: ENSO and the spatial extent of interannual precipitation extremes in tropical land areas. J. Climate, 18 , 50955109.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nicholls, N., and Murray W. , 1999: Workshop on indices and indicators for climate extremes: Asheville, NC, USA, 3-6 June 1997 Breakout Group B: Precipitation. Climatic Change, 42 , 2329.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmusson, E. M., and Carpenter T. H. , 1982: Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño. Mon. Wea. Rev., 111 , 517528.

    • Search Google Scholar
    • Export Citation
  • Ropelewski, C. F., and Halpert M. S. , 1987: Global and regional scale precipitation patterns associated with the El Niño/Southern Oscillation. Mon. Wea. Rev., 115 , 16061626.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ropelewski, C. F., and Halpert M. S. , 1989: Precipitation patterns associated with the high index phase of the Southern Oscillation. J. Climate, 2 , 268284.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stewart, R., 2005: A focus on extremes in GEWEX. GEWEX News, Vol. 15, No. 2, International GEWEX Project Office, Silver Spring, MD, 5.

  • Trenberth, K. E., 1997: The definition of El Niño. Bull. Amer. Meteor. Soc., 78 , 27712777.

  • Wilheit, T., Chang A. , and Chiu L. , 1991: Retrival of monthly rainfall indices from microwave radiometric measurements using probability distribution function. J. Atmos. Oceanic Technol., 8 , 118136.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, P., and Arkin P. A. , 1998: Global monthly precipitation estimates from satellite-observed outgoing longwave radiation. J. Climate, 11 , 137164.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, P., Janowiak J. E. , Arkin P. A. , Adler R. , Gruber A. , Ferraro R. , Huffman G. J. , and Curtis S. , 2003: GPCP pentad precipitation analyses: An experimental dataset based on gauge observations and satellite estimates. J. Climate, 16 , 21972214.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., Cecil D. J. , Liu C. , Nesbitt S. W. , and Yorty D. P. , 2006: Where are the most intense thunderstorms on Earth? Bull. Amer. Meteor. Soc., 87 , 10571071.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 4828 3896 106
PDF Downloads 565 126 13