Assessing the Errors of Cloud Liquid Water and Precipitation Flux Retrievals in Marine Stratocumulus Based on Doppler Radar Parameters

Yefim L. Kogan Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, Norman, Oklahoma

Search for other papers by Yefim L. Kogan in
Current site
Google Scholar
PubMed
Close
,
Zena N. Kogan Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, Norman, Oklahoma

Search for other papers by Zena N. Kogan in
Current site
Google Scholar
PubMed
Close
, and
David B. Mechem Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, Norman, Oklahoma

Search for other papers by David B. Mechem in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The errors of formulations of cloud retrievals based on radar reflectivity, mean Doppler velocity, and Doppler spectrum width are evaluated under the controlled framework of the Observing System Simulation Experiments (OSSEs). Cloud radar parameters are obtained from drop size distributions generated by the high-resolution Cooperative Institute for Mesoscale Meteorological Studies (CIMMS) large-eddy simulation (LES) model with explicit microphysics. It is shown that in drizzling stratocumulus the accuracy of cloud liquid water (Ql) retrieval can be substantially increased when information on Doppler velocity or Doppler spectrum width is included in addition to radar reflectivity. In the moderate drizzle case (drizzle rate R of about 1 mm day−1) the mean and standard deviation of errors is of the order of 10% for Ql values larger than 0.2 g m−3; in stratocumulus with heavy drizzle (R > 2 mm day−1) these values are approximately 20%–30%. Similarly, employing Doppler radar parameters significantly improves the accuracy of drizzle flux retrieval. The use of Doppler spectrum width σd instead of Doppler velocity yields about the same accuracy, thus demonstrating that both Doppler parameters have approximately the same potential for improving microphysical retrievals. It is noted that the error estimates herein represent the theoretical lower bound on retrieval errors, because the actual errors will inevitably increase, first and foremost, due to uncertainties in estimation contributions from air turbulence.

Corresponding author address: Yefim L. Kogan, CIMMS, University of Oklahoma, 120 David L. Boren Blvd., Suite 2100, Norman, OK 73072-7304. Email: ykogan@ou.edu

This article included in the The Global Energy and Water Cycle Experiment (GEWEX) special collection.

Abstract

The errors of formulations of cloud retrievals based on radar reflectivity, mean Doppler velocity, and Doppler spectrum width are evaluated under the controlled framework of the Observing System Simulation Experiments (OSSEs). Cloud radar parameters are obtained from drop size distributions generated by the high-resolution Cooperative Institute for Mesoscale Meteorological Studies (CIMMS) large-eddy simulation (LES) model with explicit microphysics. It is shown that in drizzling stratocumulus the accuracy of cloud liquid water (Ql) retrieval can be substantially increased when information on Doppler velocity or Doppler spectrum width is included in addition to radar reflectivity. In the moderate drizzle case (drizzle rate R of about 1 mm day−1) the mean and standard deviation of errors is of the order of 10% for Ql values larger than 0.2 g m−3; in stratocumulus with heavy drizzle (R > 2 mm day−1) these values are approximately 20%–30%. Similarly, employing Doppler radar parameters significantly improves the accuracy of drizzle flux retrieval. The use of Doppler spectrum width σd instead of Doppler velocity yields about the same accuracy, thus demonstrating that both Doppler parameters have approximately the same potential for improving microphysical retrievals. It is noted that the error estimates herein represent the theoretical lower bound on retrieval errors, because the actual errors will inevitably increase, first and foremost, due to uncertainties in estimation contributions from air turbulence.

Corresponding author address: Yefim L. Kogan, CIMMS, University of Oklahoma, 120 David L. Boren Blvd., Suite 2100, Norman, OK 73072-7304. Email: ykogan@ou.edu

This article included in the The Global Energy and Water Cycle Experiment (GEWEX) special collection.

Save
  • Austin, P., Wang Y. , Pincus R. , and Kujula V. , 1995: Precipitation in stratocumulus clouds: Observational and modeling results. J. Atmos. Sci., 52 , 23292352.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Babb, D. M., Verlinde J. , and Albrecht B. A. , 1999: Retrieval of cloud microphysical parameters from 94-GHz radar Doppler power spectra. J. Atmos. Oceanic Technol., 16 , 489503.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charlson, R. J., Lovelock J. E. , Andreae M. O. , and Warren S. G. , 1987: Ocean phytoplankton, atmospheric sulphur, cloud albedo and climate. Nature, 326 , 655661.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clothiaux, E. E., and Coauthors, 1999: The Atmospheric Radiation Measurement Program cloud radars: Operational modes. J. Atmos. Oceanic Technol., 16 , 819827.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doviak, R. J., and Zrnic D. S. , 1993: Doppler Radar and Weather Observations. Academic Press, 562 pp.

  • Feingold, G., Stevens B. , Cotton W. R. , and Frisch A. S. , 1996: The relationship between drop in-cloud residence time and drizzle production in numerically simulated stratocumulus clouds. J. Atmos. Sci., 53 , 11081122.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fox, N. I., and Illingworth A. J. , 1997: The retrieval of stratocumulus cloud properties by ground-based cloud radar. J. Appl. Meteor., 36 , 485492.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frisch, A. S., Fairall C. W. , and Snider J. B. , 1995: Measurements of stratus cloud and drizzle parameters in ASTEX with a Ka-band Doppler radar and a microwave radiometer. J. Atmos. Sci., 52 , 27882799.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frisch, A. S., Feingold G. , Fairall C. W. , Uttal T. , and Snider J. B. , 1998: On cloud radar and microwave radiometer measurements of stratus cloud liquid water profiles. J. Geophys. Res., 103 , 2319523197.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M. F., and Kogan Y. L. , 1999: A large eddy simulation model with explicit microphysics: Validation against aircraft observations of a stratocumulus-topped boundary layer. J. Atmos. Sci., 56 , 21152131.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M. F., and Kogan Y. L. , 2000: A new cloud physics parameterization in a large-eddy simulation model of marine stratocumulus. Mon. Wea. Rev., 128 , 229243.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kogan, Y. L., 1991: The simulation of a convective cloud in a 3-D model with explicit microphysics. Part I: Model description and sensitivity experiments. J. Atmos. Sci., 48 , 11601189.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kogan, Y. L., Khairoutdinov M. P. , Lilly D. K. , Kogan Z. N. , and Liu Q. , 1995: Modeling of stratocumulus cloud layers in a large eddy simulation model with explicit microphysics. J. Atmos. Sci., 52 , 29232940.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kogan, Y. L., Kogan Z. N. , and Mechem D. B. , 2005: The enhancement of radar retrievals by the use of higher moments of drop spectrum. Preprints, 32d Conf. on Radar Meteorology, Albuquerque, NM, Amer. Meteor. Soc., CD-ROM, P2R.6.

  • Kollias, P., and Albrecht B. , 2000: The turbulence structure in a continental stratocumulus cloud from millimeter-wavelength radar observations. J. Atmos. Sci., 57 , 24172434.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kollias, P., Albrecht B. A. , and Marks F. D. Jr., 2001a: Raindrop sorting induced by vertical drafts in convective clouds. Geophys. Res. Lett., 28 , 27872790.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kollias, P., Albrecht B. A. , Lhermitte R. , and Savtchenko A. , 2001b: Radar observations of updrafts, downdrafts, and turbulence in fair-weather cumuli. J. Atmos. Sci., 58 , 17501766.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, K-M., Kim J-H. , and Sud Y. , 1996: Intercomparison of hydrologic processes in AMIP GCMs. Bull. Amer. Meteor. Soc., 77 , 22092227.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liao, L., and Sassen K. , 1994: Investigation of relationships between Ka-band radar reflectivity and ice and liquid water contents. Atmos. Res., 34 , 231248.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Q., Kogan Y. L. , Lilly D. K. , Johnson D. W. , Innis G. E. , Durkee P. A. , and Nielson K. , 2000: LES modeling of ship track formation and its sensitivity to boundary layer structure. J. Atmos. Sci., 57 , 27792791.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moran, K. P., Martner B. E. , Post M. J. , Kropfli R. A. , Welsh D. C. , and Wildener K. B. , 1998: An unattended cloud-profiling radar for use in climate research. Bull. Amer. Meteor. Soc., 79 , 443455.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Connor, E. J., Hogan R. J. , and Illingworth A. J. , 2005: Retrieving stratocumulus drizzle parameters using Doppler radar and lidar. J. Appl. Meteor., 44 , 1427.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ovtchinnikov, M., and Kogan Y. L. , 2000: Retrieval of cloud liquid water profile in stratiform clouds from radar reflectivity measurements: Algorithm assessment using large-eddy simulations. J. Geophys. Res., 105 , 1735117359.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paluch, I. R., and Lenschow D. H. , 1991: Stratiform cloud formation in the marine boundary layer. J. Atmos. Sci., 48 , 21412158.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parsons, D. B., and Dudhia J. , 1997: Observing System Simulation Experiments and objective analysis tests in support of the goals of the Atmospheric Radiation Measurement Program. Mon. Wea. Rev., 125 , 23532381.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramanathan, V., Cess R. D. , Harrison E. F. , Minnis P. , Barkstorm B. R. , Ahmad E. , and Hartman D. , 1989: Cloud-radiative forcing and climate: Results from the earth radiation budget experiment. Science, 243 , 5763.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sauvageot, H., and Omar J. , 1987: Radar reflectivity of cumulus clouds. J. Atmos. Oceanic Technol., 4 , 264272.

  • Stevens, B., Cotton W. R. , Feingold G. , and Moeng C-H. , 1998: Large-eddy simulations of strongly precipitating, shallow stratocumulus-topped boundary layers. J. Atmos. Sci., 55 , 36163638.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • vanZanten, M. C., and Stevens B. , 2005: Observations of the structure of heavily precipitating marine stratocumulus. J. Atmos. Sci., 62 , 43274342.

  • Wood, R., 2005: Drizzle in stratiform boundary layer clouds. Part II: Microphysical aspects. J. Atmos. Sci., 62 , 30343050.

  • Wood, R., Field P. R. , and Cotton W. R. , 2002: Autoconversion rate bias in stratiform boundary layer cloud parameterizations. Atmos. Res., 65 , 109128.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 4503 4019 407
PDF Downloads 152 53 5