Development and Testing of a Frozen Soil Parameterization for Cold Region Studies

Xia Zhang Institute of Atmospheric Physics, Chinese Academy of Science, Beijing, China

Search for other papers by Xia Zhang in
Current site
Google Scholar
PubMed
Close
,
Shu Fen Sun State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Science, Beijing, China

Search for other papers by Shu Fen Sun in
Current site
Google Scholar
PubMed
Close
, and
Yongkang Xue Departments of Geography and Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California

Search for other papers by Yongkang Xue in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Proper simulation of soil freezing and thawing processes is an important issue in cold region climate studies. This paper reports on a frozen soil parameterization scheme for cold region studies that includes water flow and heat transfer in soil with water phase change. The mixed-form Richards’ equation is adopted to describe soil water flow affected by thermal processes in frozen soil. In addition, both liquid water and ice content have been taken into account in the frozen soil hydrologic and thermal property parameterization. To solve the complex nonlinear equation set and to ensure water conservation during simulation of complex phase change processes, efficient computational procedures have been designed and a new modified Picard iteration scheme is extended to solve the mixed-form Richards’ equation with phase change. The frozen soil model was evaluated using observational data from the field station at Rosemount, Minnesota, and the Tibet D66 site. The results show that the model is capable of providing good simulations of the evolution of temperature and liquid water content in frozen soil. Comparisons of simulation results from sensitivity studies indicate that there is a maximum difference of about 50 W m−2 in sensible and ground heat fluxes with and without the inclusion of the effect of ice content on matric potential and that using the exponential relationship between hydraulic conductivity and ice content produces realistic results.

Corresponding author address: ShuFen Sun, LASG, Institute of Atmospheric Physics, Chinese Academy of Science, Beijing 100029, China. Email: ssf@lasg.iap.ac.cn

This article included in the The Global Energy and Water Cycle Experiment (GEWEX) special collection.

Abstract

Proper simulation of soil freezing and thawing processes is an important issue in cold region climate studies. This paper reports on a frozen soil parameterization scheme for cold region studies that includes water flow and heat transfer in soil with water phase change. The mixed-form Richards’ equation is adopted to describe soil water flow affected by thermal processes in frozen soil. In addition, both liquid water and ice content have been taken into account in the frozen soil hydrologic and thermal property parameterization. To solve the complex nonlinear equation set and to ensure water conservation during simulation of complex phase change processes, efficient computational procedures have been designed and a new modified Picard iteration scheme is extended to solve the mixed-form Richards’ equation with phase change. The frozen soil model was evaluated using observational data from the field station at Rosemount, Minnesota, and the Tibet D66 site. The results show that the model is capable of providing good simulations of the evolution of temperature and liquid water content in frozen soil. Comparisons of simulation results from sensitivity studies indicate that there is a maximum difference of about 50 W m−2 in sensible and ground heat fluxes with and without the inclusion of the effect of ice content on matric potential and that using the exponential relationship between hydraulic conductivity and ice content produces realistic results.

Corresponding author address: ShuFen Sun, LASG, Institute of Atmospheric Physics, Chinese Academy of Science, Beijing 100029, China. Email: ssf@lasg.iap.ac.cn

This article included in the The Global Energy and Water Cycle Experiment (GEWEX) special collection.

Save
  • Beringer, J., Lynch A. H. , Chapin F. S. III, Mack M. , and Bonan G. B. , 2001: The representation of Arctic soils in the Land Surface Model: The importance of mosses. J. Climate, 14 , 33243335.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cary, J. W., and Mayland H. F. , 1972: Salt and water movement in unsaturated frozen soil. Soil Sci. Soc. Amer. Proc., 36 , 549555.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Celia, M. A., Bouloutas E. T. , and Zarba R. L. , 1990: A general mass-conservative numerical solution for the unsaturated flow equation. Water Resour. Res., 26 , 14831496.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cherkauer, K. A., and Lettenmaier D. P. , 1999: Hydrologic effects of frozen soils in the upper Mississippi River basin. J. Geophys. Res., 104 , 1959919610.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clapp, R. B., and Hornberger G. M. , 1978: Empirical equations for some soil hydraulic properties. Water Resour. Res., 14 , 601604.

  • Cox, P. M., Betts R. A. , Bunton C. B. , Essery R. L. H. , Rowntree P. R. , and Smith J. , 1999: The impact of new land surface physics on the GCM simulation of climate and climate sensitivity. Climate Dyn., 15 , 183203.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, Y., and Coauthors, 2003: The Common Land Model. Bull. Amer. Meteor. Soc., 84 , 10131023.

  • Farouki, O. T., 1981: The thermal properties of soil in cold regions. Cold Reg. Sci. Technol., 5 , 6775.

  • Farouki, O. T., 1986: Thermal Properties of Soils. Series on Rock and Soil Mechanics, Vol. 11, Trans Tech Publications, 136 pp.

  • Flerchinger, G. N., and Saxton K. E. , 1989: Simultaneous heat and water model of a freezing snow–residue–soil system. I. Theory and development. Trans. ASAE, 32 , 565571.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fuchs, M., Campbell G. S. , and Papendick R. I. , 1978: An analysis of sensible and latent heat flow in a partially frozen unsaturated soil. Soil Sci. Soc. Amer. J., 42 , 379385.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guymon, G. L., Berg R. L. , and Hromadka T. V. , 1993: Mathematical model of frost heave and thaw settlement in pavements. CRREL Rep. 93-2, 126 pp.

  • Hansson, K., Simunek J. , Mizoguchi M. , Lundin L. C. , and van Genuchten M. T. , 2004: Water flow and heat transport in frozen soil: Numerical solution and freeze/thaw applications. Vadose Zone J., 3 , 693704.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harlan, R. L., 1973: Analysis of coupled heat-fluid transport in partially frozen soil. Water Resour. Res., 9 , 13141323.

  • Huang, K., Mohanty B. P. , Leij F. J. , and van Genuchten M. T. , 1998: Solution of the nonlinear transport equation using modified Picard iteration. Adv. Water Res., 21 , 237249.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jame, Y. W., and Norum D. I. , 1980: Heat and mass transfer in a freezing unsaturated porous medium. Water Resour. Res., 117 , 811819.

  • Johanson, O., 1975: Thermal conductivity of soils. Ph.D. dissertation, University of Trondheim, 236 pp.

  • Kondo, J., and Xu J. Q. , 1997: Seasonal variations in the heat and water balances for nonvegetated surfaces. J. Appl. Meteor., 36 , 16761695.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koren, V., Schaake J. , Mitchell K. , Duan Q. Y. , Chen F. , and Baker J. M. , 1999: A parameterization of snowpack and frozen ground intended for NCEP weather and climate models. J. Geophys. Res., 104 , D16. 1956919585.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kulik, V. Y., 1978: Water Infiltration into Soil. (in Russian). Gidrometeoizdat, 93 pp.

  • Li, X., and Koike T. , 2003: Frozen soil parameterization in SiB2 and its validation with GAME-Tibet observations. Cold Reg. Sci. Technol., 36 , 165182.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lundin, L-C., 1990: Hydraulic properties in an operational model of frozen soil. J. Hydrol., 118 , 289310.

  • Luo, L. F., and Coauthors, 2003: Effects of frozen soil on soil temperature, spring infiltration, and runoff: Results from the PILPS 2(d) experiment at Valdai, Russia. J. Hydrometeor., 4 , 334351.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, R. D., 1980: Freezing phenomena in soil. Application of Soil Physics, D. Hillel, Ed., Academic Press, 255–299.

  • Mikan, C. J., Schimel J. P. , and Doyle A. P. , 2002: Temperature controls of microbial respiration above and below freezing in arctic tundra soils. Soil Biol. Biochem., 34 , 17851795.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mölders, N., and Walsh J. E. , 2004: Atmospheric response to soil-frost and snow in Alaska in March. Theor. Appl. Climatol., 77 , 77115.

  • Mölders, N., Haferkorn U. , Döring J. , and Kramm G. , 2003: Long-term numerical investigations on the water budget quantities predicted by the hydro-thermodynamic soil vegetation scheme (HTSVS). Part I: Description of the model and impact of long-wave radiation, roots, snow, and soil frost. Meteor. Atmos. Phys., 84 , 115135.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niu, G-Y., and Yang Z-L. , 2006: Effects of frozen soil on snowmelt runoff and soil water storage at a continental scale. J. Hydrometeor., 7 , 937952.

  • Pauwels, V. R. N., and Wood E. F. , 1999: A soil–vegetation–atmosphere transfer scheme for the modeling of water and energy balance processes in high latitudes. 1. Model improvements. J. Geophys. Res., 104 , 2781127822.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peixoto, J., and Oort A. H. , 1992: Physics of Climate. American Institute of Physics, 200 pp.

  • Peters-Lidard, C. D., Blackburn E. , Liang X. , and Wood E. F. , 1998: The effect of soil thermal conductivity parameterization on surface energy fluxes and temperature. J. Atmos. Sci., 55 , 12091224.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poutou, E., Krinner G. , Genthon C. , and de Noblet-Ducoudré N. , 2004: Role of soil freezing in future boreal climate change. Climate Dyn., 23 , 621639.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shoop, S. A., and Bigl S. R. , 1997: Moisture migration during freeze and thaw of unsaturated soils: Modeling and large scale experiments. Cold Reg. Sci. Technol., 25 , 3345.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Slater, A. G., Pitman A. J. , and Desborough C. E. , 1998: Simulation of freeze-thaw cycles in a general circulation model land surface scheme. J. Geophys. Res., 103 , 1130311312.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smirnova, T. G., Brown J. M. , Benjamin S. G. , and Kim D. , 2000: Parameterization of cold-season processes in the MAPS land-surface scheme. J. Geophys. Res., 105 , D3. 40774086.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stähli, M., Jansson P. E. , and Lundin L. C. , 1999: Soil moisture redistribution and infiltration in frozen sandy soils. Water Resour. Res., 35 , 95103.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, S. F., Jin J. M. , and Xue Y. K. , 1999: A simple snow–atmosphere–soil transfer model. J. Geophys. Res., 104 , 1958719597.

  • Sun, S. F., Zhang X. , and Wei G. A. , 2003: A simplified version of the coupled heat and moisture transport model. Global Planet. Change, 37 , 265276.

    • Search Google Scholar
    • Export Citation
  • Takata, K., and Kimoto M. , 2000: A numerical study on the impact of soil freezing on the continental-scale seasonal cycle. J. Meteor. Soc. Japan, 78 , 199221.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, G. S., and Luthin J. N. , 1978: A model for coupled heat and moisture transfer during soil freezing. Can. Geotech. J., 15 , 548555.

  • Viterbo, P., Beljaars A. , Mahfouf J. F. , and Teixeira J. , 1999: The representation of soil moisture freezing and its impact on the stable boundary layer. Quart. J. Roy. Meteor. Soc., 125 , 24012426.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warrach, K., Mengelkamp H. T. , and Raschke E. , 2001: Treatment of frozen soil and snow cover in the land-surface model SEWAB. Theor. Appl. Climatol., 70 , 2337.

    • Search Google Scholar
    • Export Citation
  • Williams, P. J., 1967: Properties and behaviors of freezing soils. Norwegian Geotechnical Institute Publ. 72, 119 pp.

  • Xu, X. Z., Wang J. C. , and Zhang L. X. , 2001: Physics of Frozen Soil. (in Chinese). Chinese Science Press, 351 pp.

  • Yang, M. X., Yao T. , Gou X. , Koike T. , and He Y. , 2003: The soil moisture distribution, thawing–freezing processes and their effects on the seasonal transition on the Qinghai-Xizang (Tibetan) plateau. J. Asian Earth Sci., 21 , 457465.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, Z. L., Dickinson R. E. , Robock A. , and Vinnikov K. Y. , 1997: Validation of the snow submodel of the Biosphere–Atmosphere Transfer Scheme with Russian snow cover and meteorological observational data. J. Climate, 10 , 353373.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 4408 3187 363
PDF Downloads 974 259 20