Response of Seasonal Simulations of a Regional Climate Model to High-Frequency Variability of Soil Moisture during the Summers of 1988 and 1993

Song Yang Climate Prediction Center, NOAA/NWS/NCEP, Camp Springs, Maryland

Search for other papers by Song Yang in
Current site
Google Scholar
PubMed
Close
,
S-H. Yoo RSIS/Climate Prediction Center, Camp Springs, Maryland

Search for other papers by S-H. Yoo in
Current site
Google Scholar
PubMed
Close
,
R. Yang Environmental Modeling Center, NOAA/NWS/NCEP, Camp Springs, Maryland

Search for other papers by R. Yang in
Current site
Google Scholar
PubMed
Close
,
K. E. Mitchell Environmental Modeling Center, NOAA/NWS/NCEP, Camp Springs, Maryland

Search for other papers by K. E. Mitchell in
Current site
Google Scholar
PubMed
Close
,
H. van den Dool Climate Prediction Center, NCEP/NWS/NOAA, Camp Springs, Maryland

Search for other papers by H. van den Dool in
Current site
Google Scholar
PubMed
Close
, and
R. W. Higgins Climate Prediction Center, NCEP/NWS/NOAA, Camp Springs, Maryland

Search for other papers by R. W. Higgins in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study employs the NCEP Eta Regional Climate Model to investigate the response of the model’s seasonal simulations of summer precipitation to high-frequency variability of soil moisture. Specifically, it focuses on the response of model precipitation and temperature over the U.S. Midwest and Southeast to imposed changes in the diurnal and synoptic variability of soil moisture in 1988 and 1993.

High-frequency variability of soil moisture increases (decreases) precipitation in the 1988 drought (1993 flood) year in the central and southern-tier states, except along the Gulf Coast, but causes smaller changes in precipitation along the northern-tier states. The diurnal variability and synoptic variability of soil moisture produce similar patterns of precipitation change, indicating the importance of the diurnal cycle of land surface process. The increase (decrease) in precipitation is generally accompanied by a decrease (increase) in surface and lower-tropospheric temperatures, and the changes in precipitation and temperature are attributed to both the local effect of evaporation feedback and the remote influence of large-scale water vapor transport. The precipitation increase and temperature decrease in 1988 are accompanied by an increase in local evaporation and, more importantly, by an increase in the large-scale water vapor convergence into the Midwest and Southeast. Analogous but opposite-sign behavior occurs in 1993 (compared to 1988) in changes in precipitation, temperature, soil moisture, evaporation, and large-scale water vapor transport.

Results also indicate that, in regions where the model simulates the diurnal cycle of soil moisture reasonably well, including this diurnal cycle in the simulations improves model performance. However, no notable improvement in model precipitation can be found in regions where the model fails to realistically simulate the diurnal variability of soil moisture.

Corresponding author address: Dr. Song Yang, NOAA/Climate Prediction Center, 5200 Auth Road, Room 605, Camp Springs, MD 20746. Email: song.yang@noaa.gov

This article included in the The Global Energy and Water Cycle Experiment (GEWEX) special collection.

Abstract

This study employs the NCEP Eta Regional Climate Model to investigate the response of the model’s seasonal simulations of summer precipitation to high-frequency variability of soil moisture. Specifically, it focuses on the response of model precipitation and temperature over the U.S. Midwest and Southeast to imposed changes in the diurnal and synoptic variability of soil moisture in 1988 and 1993.

High-frequency variability of soil moisture increases (decreases) precipitation in the 1988 drought (1993 flood) year in the central and southern-tier states, except along the Gulf Coast, but causes smaller changes in precipitation along the northern-tier states. The diurnal variability and synoptic variability of soil moisture produce similar patterns of precipitation change, indicating the importance of the diurnal cycle of land surface process. The increase (decrease) in precipitation is generally accompanied by a decrease (increase) in surface and lower-tropospheric temperatures, and the changes in precipitation and temperature are attributed to both the local effect of evaporation feedback and the remote influence of large-scale water vapor transport. The precipitation increase and temperature decrease in 1988 are accompanied by an increase in local evaporation and, more importantly, by an increase in the large-scale water vapor convergence into the Midwest and Southeast. Analogous but opposite-sign behavior occurs in 1993 (compared to 1988) in changes in precipitation, temperature, soil moisture, evaporation, and large-scale water vapor transport.

Results also indicate that, in regions where the model simulates the diurnal cycle of soil moisture reasonably well, including this diurnal cycle in the simulations improves model performance. However, no notable improvement in model precipitation can be found in regions where the model fails to realistically simulate the diurnal variability of soil moisture.

Corresponding author address: Dr. Song Yang, NOAA/Climate Prediction Center, 5200 Auth Road, Room 605, Camp Springs, MD 20746. Email: song.yang@noaa.gov

This article included in the The Global Energy and Water Cycle Experiment (GEWEX) special collection.

Save
  • Baker, R. D., Lynn B. H. , Boone A. , Tao W-K. , and Simpson J. , 2001: The influence of soil moisture, coastline curvature, and land-breeze circulations on sea-breeze-initiated precipitation. J. Hydrometeor., 2 , 193211.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnett, T. P., Dumenil L. , Schlese U. , Roecker E. , and Latif M. , 1989: The effect of Eurasian snow cover on regional and global climate variations. J. Atmos. Sci., 46 , 661685.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beljaars, A. C. M., Viterbo P. , Miller M. J. , and Betts A. K. , 1996: The anomalies rainfall over the United States during July 1993: Sensitivity to land surface parameterization and soil moisture anomalies. Mon. Wea. Rev., 124 , 362383.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Betts, A. K., Ball J. H. , Beljaars A. C. M. , Miller M. J. , and Viterbo P. A. , 1996: The land surface–atmosphere interaction: A review based on observational and global modeling perspectives. J. Geophys. Res., 101 , 72097225.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., Janjic Z. I. , and Mitchell K. E. , 1997: Impact of atmospheric surface layer parameterization in the new land-surface scheme of the NCEP mesoscale Eta numerical model. Bound.-Layer Meteor., 85 , 391421.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., Dolman A. J. , and Sato N. , 1999: The pilot phase of the global soil wetness project. Bull. Amer. Meteor. Soc., 80 , 851878.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., Zeng F. J. , Ducharne A. , Morrill J. C. , and Koster R. D. , 2000: The sensitivity of surface fluxes to soil water content in three land surface schemes. J. Hydrometeor., 1 , 121134.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., Koster R. D. , and Guo Z. , 2006: Do global models properly represent the feedback between land and atmosphere? J. Hydrometeor., 7 , 11771198.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ek, M. B., Mitchell K. E. , Lin Y. , Rogers E. , Grunmann P. , Koren V. , Gayno G. , and Tarpley J. D. , 2003: Implementation of the Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta Model. J. Geophys. Res., 108 .8851, doi:10.1029/2002JD003296.

    • Search Google Scholar
    • Export Citation
  • Eltahir, E. A. B., 1998: A soil moisture-rainfall feedback mechanism. I. Theory and observations. Water Resour. Res., 34 , 765776.

  • Fan, Y., Van den Dool H. M. , Lohmann D. , and Mitchell K. , 2006: 1948–98 U.S. hydrological reanalysis by the Noah Land Assimilation System. J. Climate, 19 , 12141237.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fennessy, M. J., and Shukla J. , 1999: Impact of soil wetness on seasonal atmospheric prediction. J. Climate, 12 , 31673180.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fennessy, M. J., and Shukla J. , 2000: Seasonal prediction over North America with a regional model nested in a global model. J. Climate, 13 , 26052627.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guo, Z., and Coauthors, 2006: GLACE: The Global Land–Atmosphere Coupling Experiment. Part II: Analysis. J. Hydrometeor., 7 , 611625.

  • Gutowski, W. J., Otieno F. O. , Arritt R. W. , Takle E. S. , and Pan Z. , 2004: Diagnosis and attribution of a seasonal precipitation deficit in a U.S. regional climate simulation. J. Hydrometeor., 5 , 230242.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gutzler, D. S., and Preston J. W. , 1997: Evidence for a relationship between spring snow cover in North America and summer precipitation in New Mexico. Geophys. Res. Lett., 24 , 22072210.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hahn, D. G., and Shukla J. , 1976: An apparent relationship between Eurasian snow cover and Indian monsoon rainfall. J. Atmos. Sci., 33 , 24612462.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., Yao Y. , and Wang X. L. , 1997: Influence of the North American monsoon system on the U.S. summer precipitation regime. J. Climate, 10 , 26002622.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., Mo K. C. , and Yao Y. , 1998: Interannual variability of the United States summer precipitation regime with emphasis on the Southwest Monsoon. J. Climate, 11 , 25822606.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., Shi W. , and Yarosh E. , 2000: Improved United States Precipitation Quality Control System and Analysis. NCEP/Climate Prediction Center Atlas 7, 40 pp.

  • Hong, S-Y., and Kalnay E. , 2000: Role of sea surface temperature and soil-moisture feedback in the 1998 Oklahoma–Texas drought. Nature, 408 , 842844.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, Q., and Feng S. , 2002: Interannual rainfall variations in the North American summer monsoon region: 1900–98. J. Climate, 15 , 11891202.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, J., and Van den Dool H. M. , 1993: Monthly precipitation–temperature relations and temperature prediction over the United States. J. Climate, 6 , 11111132.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, J., Van den Dool H. M. , and Georgakakos K. P. , 1996: Analysis of model-calculated soil moisture over the United States (1931–1993) and applications to long-range temperature forecasts. J. Climate, 9 , 13501362.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 1990: The step-mountain coordinate: Physical package. Mon. Wea. Rev., 118 , 14291443.

  • Janjić, Z. I., 1994: The step-mountain Eta coordinate model: Further developments of convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122 , 927945.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., Ebisuzaki W. , Woollen J. , Yang S-K. , Hnilo J. J. , Fiorino M. , and Potter G. L. , 2002: NCEP–DOE AMIP-II reanalysis (R-2). Bull. Amer. Meteor. Soc., 83 , 16311643.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Suarez M. J. , 1995: The relative contributions of land and ocean processes to precipitation variability. J. Geophys. Res., 100 , 1377513790.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., Suarez M. J. , and Heiser M. , 2000: Variance and predictability of precipitation at seasonal-to-interannual timescales. J. Hydrometeor., 1 , 2646.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2004: Realistic initialization of land surface states: Impacts on subseasonal forecast skill. J. Hydrometeor., 5 , 10491063.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2006: GLACE: The Global Land–Atmosphere Coupling Experiment. Part I: Overview. J. Hydrometeor., 7 , 590610.

  • Lau, K-M., and Bua W. R. , 1998: Mechanisms of monsoon–Southern Oscillation coupling: Insights from GCM experiments. Climate Dyn., 14 , 759779.

  • Lee, M-I., and Coauthors, 2007: Sensitivity of horizontal resolution in the AGCM simulations of warm season diurnal cycle of precipitation over the United States and northern Mexico. J. Climate, 20 , 18621881.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahanama, S. P. P., and Koster R. D. , 2005: AGCM biases in evaporation regimes: Impacts on soil moisture memory and land–atmosphere feedback. J. Hydrometeor., 6 , 656669.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., 1994: Influence of the land surface in the Asian summer monsoon: External conditions versus internal feedbacks. J. Climate, 7 , 10331049.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., and Yamada T. , 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. Space Phys., 20 , 851875.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mesinger, F., and Coauthors, 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87 , 343360.

  • Namias, J., 1991: Spring and summer 1988 drought over the contiguous United States—Causes and prediction. J. Climate, 4 , 5465.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pal, J. S., and Eltahir E. A. B. , 2001: Pathways relating soil moisture conditions to future summer rainfall within a model of the land–atmosphere system. J. Climate, 14 , 12271242.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pal, J. S., and Eltahir E. A. B. , 2002: Teleconnections of soil moisture and rainfall during the 1993 midwest summer flood. Geophys. Res. Lett., 29 .1865, doi:10.1029/2002GL014815.

    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., and Coauthors, 2004: Development of a European multimodel ensemble system for seasonal-to-interannual prediction (DEMETER). Bull. Amer. Meteor. Soc., 85 , 853872.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qu, W., and Coauthors, 1998: Sensitivity of latent heat flux from PILPS land-surface schemes to perturbations of surface air temperature. J. Atmos. Sci., 55 , 19091927.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2006: The NCEP Climate Forecast System. J. Climate, 19 , 34833517.

  • Schubert, S. D., Helfand H. M. , Wu C. Y. , and Min W. , 1998: Subseasonal variations in warm-season moisture transport and precipitation over the central and eastern United States. J. Climate, 11 , 25302555.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Segal, M., Arritt R. W. , Clark C. , Rabin R. , and Brown J. , 1995: Scaling evaluation of the effect of surface characteristics of potential for deep convection over uniform terrain. Mon. Wea. Rev., 123 , 383400.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, C. B., Lakhtakia M. N. , Capehart W. J. , and Carlson T. N. , 1994: Initialization of soil-water content in regional scale atmospheric prediction models. Bull. Amer. Meteor. Soc., 75 , 585593.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stern, W., and Miyakoda K. , 1995: Feasibility of seasonal forecasts inferred from multiple GCM simulations. J. Climate, 8 , 10711085.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takle, E. S., and Coauthors, 1999: Project to intercompare regional climate simulations (PIRCS): Description and initial results. J. Geophys. Res., 104 , 1944319461.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Timbal, B., Power S. , Colman R. , Viviand J. , and Lirola S. , 2002: Does soil moisture influence climate variability and predictability over Australia? J. Climate, 15 , 12301238.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and Guillemot C. J. , 1996: Physical processes involved in the 1988 drought and 1993 floods in North America. J. Climate, 9 , 12881298.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Viterbo, P., and Betts A. K. , 1999: Impact of the ECMWF reanalysis soil water on forecast of the July 1993 Mississippi flood. J. Geophys. Res., 104 , 1936119366.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weaver, C. P., 2004: Coupling between large-scale atmospheric processes and mesoscale land-atmosphere interactions in the U.S. southern Great Plains during summer. Part II: Mean impacts of the mesoscale. J. Hydrometeor., 5 , 12471258.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, Y., Zeng F. J. , and Schlosser C. A. , 1996: SSiB and its sensitivity to soil properties—A case study using HAPEX-Mobilhy data. Global Planet. Change, 13 , 183194.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, Y., Zeng F. J. , Mitchell K. E. , Janjic Z. , and Rogers E. , 2001: The impact of land surface processes on simulations of the U.S. hydrological cycle: A case study of 1993 flood using the SSiB Land Surface Model in the NCEP Eta Regional Model. Mon. Wea. Rev., 129 , 28332860.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, S., and Lau K-M. , 1998: Influences of sea surface temperature and ground wetness on Asian summer monsoon. J. Climate, 11 , 32303246.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, S., and Lau K-M. , 2006: Interannual variability of the Asian monsoon. The Asian Monsoon, B. Wang, Ed., Praxis, 259–293.

    • Crossref
    • Export Citation
  • Yang, S., Lau K-M. , and Sankar-Rao M. , 1996: Precursory signals associated with the interannual variability of the Asian summer monsoon. J. Climate, 9 , 949964.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, Q., and Carr F. H. , 1997: A prognostic cloud scheme for operational NWP models. Mon. Wea. Rev., 125 , 19311953.

  • Zhu, J., and Liang X-Z. , 2005: Regional climate model simulation of U.S. soil temperature and moisture during 1982–2002. J. Geophys. Res., 110 .D24110, doi:10.1029/2005JD006472.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 3776 3502 36
PDF Downloads 126 38 3