Small-Scale Spatial Gradients in Climatological Precipitation on the Olympic Peninsula

Alison M. Anders Department of Earth and Space Sciences, University of Washington, Seattle, Washington

Search for other papers by Alison M. Anders in
Current site
Google Scholar
PubMed
Close
,
Gerard H. Roe Department of Earth and Space Sciences, University of Washington, Seattle, Washington

Search for other papers by Gerard H. Roe in
Current site
Google Scholar
PubMed
Close
,
Dale R. Durran Department of Atmospheric Sciences, University of Washington, Seattle, Washington,

Search for other papers by Dale R. Durran in
Current site
Google Scholar
PubMed
Close
, and
Justin R. Minder Department of Atmospheric Sciences, University of Washington, Seattle, Washington,

Search for other papers by Justin R. Minder in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Persistent, 10-km-scale gradients in climatological precipitation tied to topography are documented with a finescale rain and snow gauge network in the Matheny Ridge area of the Olympic Mountains of Washington State. Precipitation totals are 50% higher on top of an ∼800-m-high ridge relative to valleys on either side, 10 km distant. Operational fifth-generation Pennsylvania State University–NCAR Mesoscale Model (MM5) runs on a 4-km grid produce similar precipitation patterns with enhanced precipitation over high topography for 6 water years.

The performance of the MM5 is compared to the gauge data for 3 wet seasons and for 10 large precipitation events. The cumulative MM5 precipitation forecasts for all seasons and for the sum of all 10 large events compare well with the precipitation measured by the gauges, although some of the individual events are significantly over- or underforecast. This suggests that the MM5 is reproducing the precipitation climatology in the vicinity of the gauges, but that errors for individual events may arise due to inaccurate specification of the incident flow.

A computationally simple model of orographic precipitation is shown to reproduce the major features of the event precipitation pattern on the windward side of the range. This simple model can be coupled to landscape evolution models to examine the impact of long-term spatial variability in precipitation on the evolution of topography over thousands to millions of years.

* Current affliation: Department of Geology, University of Illinois at Urbana–Champaign, Urbana, Illinois

Corresponding author address: Alison M. Anders, Department of Geology, University of Illinois, 1301 West Green St., Urbana, IL 61801. Email: amanders@uiuc.edu

Abstract

Persistent, 10-km-scale gradients in climatological precipitation tied to topography are documented with a finescale rain and snow gauge network in the Matheny Ridge area of the Olympic Mountains of Washington State. Precipitation totals are 50% higher on top of an ∼800-m-high ridge relative to valleys on either side, 10 km distant. Operational fifth-generation Pennsylvania State University–NCAR Mesoscale Model (MM5) runs on a 4-km grid produce similar precipitation patterns with enhanced precipitation over high topography for 6 water years.

The performance of the MM5 is compared to the gauge data for 3 wet seasons and for 10 large precipitation events. The cumulative MM5 precipitation forecasts for all seasons and for the sum of all 10 large events compare well with the precipitation measured by the gauges, although some of the individual events are significantly over- or underforecast. This suggests that the MM5 is reproducing the precipitation climatology in the vicinity of the gauges, but that errors for individual events may arise due to inaccurate specification of the incident flow.

A computationally simple model of orographic precipitation is shown to reproduce the major features of the event precipitation pattern on the windward side of the range. This simple model can be coupled to landscape evolution models to examine the impact of long-term spatial variability in precipitation on the evolution of topography over thousands to millions of years.

* Current affliation: Department of Geology, University of Illinois at Urbana–Champaign, Urbana, Illinois

Corresponding author address: Alison M. Anders, Department of Geology, University of Illinois, 1301 West Green St., Urbana, IL 61801. Email: amanders@uiuc.edu

Save
  • Anders, A. M., 2005: The co-evolution of precipitation and topography. Ph.D. dissertation, University of Washington, 248 pp.

  • Anders, A. M., Roe G. H. , Hallet B. , Montgomery D. R. , Finnegan N. J. , and Putkonen J. , 2006: Spatial patterns of precipitation and topography in the Himalaya. Tectonics, Climate, and Landscape Evolution: Geological Society of America Special Paper 398, S. D. Willett et al., Eds., Geological Society of America, 39–53.

    • Crossref
    • Export Citation
  • Barros, A. P., and Lettenmaier D. P. , 1993: Dynamic modeling of the spatial distribution of precipitation in remote mountainous areas. Mon. Wea. Rev., 121 , 11951214.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barros, A. P., and Lettenmaier D. P. , 1994: Dynamic modeling of orographically induced precipitation. Rev. Geophys., 32 , 265284.

  • Barros, A. P., Joshi M. , Putkonen J. , and Burbank D. W. , 2000: A study of the 1999 monsoon rainfall in a mountainous region in central Nepal using TRMM products and rain gauge observations. Geophys. Res. Lett., 27 , 36833686.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beaumont, C., Fullsack P. , and Hamilton J. , 1992: Erosional control of active compressional orogens. Thrust Tectonics, K. R. McClay, Ed., Chapman and Hall, 1–18.

    • Search Google Scholar
    • Export Citation
  • Bond, N. A., and Coauthors, 1997: The Coastal Observation and Simulation with Topography (COAST) experiment. Bull. Amer. Meteor. Soc., 78 , 19411955.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Caracoana, R., and Enz J. W. , 2000: An enhanced technique for a more reliable daily snow measurements with an antifreeze-based tipping bucket gauge. Proc. Western Snow Conf. 68th Annual Meeting, Port Angeles, WA, Western Snow Conference, 87–91.

  • Colle, B. A., and Mass C. F. , 1996: An observational and modeling study of the interaction of low-level southwesterly flow with the Olympic Mountains during COAST IOP 4. Mon. Wea. Rev., 124 , 21522175.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colle, B. A., Mass C. F. , and Smull B. F. , 1999: An observational and numerical study of a cold front interacting with the Olympic Mountains during COAST IOP5. Mon. Wea. Rev., 127 , 13101334.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colle, B. A., Mass C. F. , and Westrick K. J. , 2000: MM5 precipitation verification over the Pacific Northwest during the 1997–99 cool seasons. Wea. Forecasting, 15 , 730744.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colle, B. A., Garvert M. , Wolfe J. , and Mass C. F. , 2005: The 13–14 December 2001 IMPROVE-2 event. Part III: Simulated microphysical budgets and sensitivity studies. J. Atmos. Sci., 62 , 35353558.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dingman, S. L., 1994: Physical Hydrology. Macmillan, 575 pp.

  • Durran, D. R., and Klemp J. B. , 1982: On the effects of moisture on the Brunt-Väisälä frequency. J. Atmos. Sci., 39 , 21522158.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferguson, S. A., Breyfogle S. , Moore M. B. , Marriott R. , and Judd D. , 1997: NWAC mountain weather. USDA Natural Resources Conservation Service, Climate Data Access Facility Rep., 40 pp.

  • Frei, C., and Schär C. , 1998: A precipitation climatology of the Alps from high-resolution rain gauge observations. Int. J. Climatol., 18 , 873900.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garvert, M. F., Colle B. A. , and Mass C. F. , 2005a: The 13–14 December 2001 IMPROVE-2 event. Part I: Synoptic and mesoscale evolution and comparison with a mesoscale model simulation. J. Atmos. Sci., 62 , 34743492.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garvert, M. F., Woods C. P. , Colle B. A. , Mass C. F. , Hobbs P. V. , Stoelinga M. T. , and Wolfe J. B. , 2005b: The 13–14 December 2001 IMPROVE-2 event. Part II: Comparisons of MM5 model simulations of clouds and precipitation with observations. J. Atmos. Sci., 62 , 35203534.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garvert, M. F., Smull B. , and Mass C. , 2007: Multiscale mountain waves influencing a major orographic precipitation event. J. Atmos. Sci., 64 , 711737.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Groisman, P. Ya, and Legates D. R. , 1994: The accuracy of United States precipitation data. Bull. Amer. Meteor. Soc., 75 , 215227.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hallet, B., 1979: A theoretical model of glacial abrasion. J. Glaciol., 17 , 209222.

  • Hallet, B., 1996: Glacial quarrying: A simple theoretical model. Ann. Glaciol., 22 , 18.

  • Harbor, J. M., 1992: Application of a general sliding law to simulating flow in a glacier cross section. J. Glaciol., 38 , 182190.

  • Hill, F. F., Browning K. A. , and Bader M. J. , 1981: Radar and raingauge observations of orographic rain over south Wales. Quart. J. Roy. Meteor. Soc., 107 , 643670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoffman, P. F., and Grotzinger J. P. , 1993: Orographic precipitation, erosional unloading, and tectonic style. Geology, 21 , 195198.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Howard, A. D., 1994: A detachment limited model of drainage basin evolution. Water Resour. Res., 30 , 22612285.

  • Jiang, Q., 2003: Moist dynamics and orographic precipitation. Tellus, 55A , 301316.

  • Jiang, Q., and Smith R. B. , 2003: Cloud timescales and orographic precipitation. J. Atmos. Sci., 60 , 15431559.

  • Leung, L. R., and Qian Y. , 2003: The sensitivity of precipitation and snowpack simulations to model resolution via nesting in regions of complex terrain. J. Hydrometeor., 4 , 10251043.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mass, C. F., 1981: Topographically forced convergence in western Washington State. Mon. Wea. Rev., 109 , 13351347.

  • Mass, C. F., and Coauthors, 2003: Regional environmental prediction over the Pacific Northwest. Bull. Amer. Meteor. Soc., 84 , 13531366.

  • McCaughey, W. W., and Farnes P. E. , 1996: Measuring winter precipitation with an antifreeze-based tipping bucket gauge. Proc. Western Snow Conf. 64th Annual Meeting, Bend, OR, Western Snow Conference, 130–136.

  • Minder, J. R., Anders A. M. , Durran D. , and Roe G. H. , 2006: Small-scale gradients in climatological precipitation on the Olympic Peninsula. Extended Abstracts, 12th Conf. on Mountain Meteorology, Santa Fe, NM, Amer. Meteor. Soc., 4.5.

  • Oerlemans, J., 1984: Numerical experiments of large scale glacial erosion. Z. Gletcherkunde Glazial Geol., 20 , 107126.

  • Parsons, D. B., and Hobbs P. V. , 1983: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. IX: Some effects of orography on rainbands. J. Atmos. Sci., 40 , 19301949.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roe, G. H., 2005: Orographic precipitation. Annu. Rev. Earth Planet. Sci., 33 , 645671.

  • Roe, G. H., Montgomery D. R. , and Hallet B. , 2001: Effects of orographic precipitation variations on the concavity of steady-state river profiles. Geology, 30 , 143146.

    • Search Google Scholar
    • Export Citation
  • Roe, G. H., Montgomery D. R. , and Hallet B. , 2003: Orographic precipitation and the relief of mountain ranges. J. Geophys. Res., 108 .2315, doi:10.1029/2001JB001521.

    • Search Google Scholar
    • Export Citation
  • Sinclair, M. R., Wratt D. S. , Henderson R. D. , and Gray W. R. , 1997: Factors affecting the distribution and spillover of precipitation in the Southern Alps of New Zealand—A case study. J. Appl. Meteor., 36 , 428442.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. B., 1979: The influence of mountains on the atmosphere. Advances in Geophysics, Vol. 21, Academic Press, 87–233.

    • Crossref
    • Export Citation
  • Smith, R. B., and Barstad I. , 2004: A linear theory of orographic precipitation. J. Atmos. Sci., 61 , 13771391.

  • Smith, R. B., Barstad I. , and Bonneau L. , 2005: Orographic precipitation and Oregon’s climate transition. J. Atmos. Sci., 62 , 177191.

  • Stolar, D. B., Willett S. D. , and Roe G. H. , 2006: Tectonic and erosional forcing of a critical orogen. Tectonics, Climate, and Landscape Evolution: Geological Society of America Special Paper 398, S. D. Willett et al., Eds., 241–250.

    • Crossref
    • Export Citation
  • Thomas, B. E., Goodman L. A. , and Olsen T. D. , 1999: Hydrogeologic assessment of the Sequim-Dungeness area, Clallam County, Washington. USGS Water Resources Investigation Rep. 99-4048, 165 pp.

  • Westrick, K. J., and Mass C. F. , 2001: An evaluation of a high-resolution hydrometeorological modeling system for the prediction of a cool-season flood event in a coastal mountainous watershed. J. Hydrometeor., 2 , 161180.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whipple, K. X., 2004: Bedrock rivers and the geomorphology of active orogens. Annu. Rev. Earth Planet. Sci., 32 , 151185.

  • Wilson, W. T., 1954: Analysis of winter precipitation observations in the cooperative snow investigations. Mon. Wea. Rev., 82 , 183199.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, D., Goodison B. E. , Metcalfe J. R. , Golubev V. S. , Bates R. , Pangburn T. , and Hanson C. L. , 1998: Accuracy of NWS 8″ standard nonrecording precipitation gauge: Results and application of WMO intercomparison. J. Atmos. Oceanic Technol., 15 , 5468.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1032 656 33
PDF Downloads 290 49 5