Calibration of LaD Model in the Northeast United States Using Observed Annual Streamflow

Y. Xia Atmospheric and Oceanic Science Program, Princeton University, Princeton, New Jersey

Search for other papers by Y. Xia in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Calibration of land surface models improves simulations of surface water and energy fluxes and provides important information for water resources management. However, most calibration studies focus on local sites and/or small catchments because of computational limitations, lack of atmospheric forcing data, and lack of observed water and energy fluxes. Even though a well-established streamflow gauge network exists, its data are not well suited to the calibration of land surface models in cold regions because of large systematic precipitation biases. This study provides a newly developed method to adjust systematic precipitation biases arising from gauge undercatch (e.g., wind blowing, wetting loss, and evaporation loss). The new method estimates model parameter and precipitation errors simultaneously through the use of observed annual streamflow in the northeastern United States. The results show that this method improves streamflow simulations and gives a reasonable estimate for systematic precipitation bias. In addition, the impacts of model parameter errors on the calibration of the Land Dynamics (LaD) model and on the estimation of systematic precipitation biases are investigated in the northeastern United States.

* Current affiliation: Environmental Modeling Center, NOAA/National Centers for Environmental Prediction, Camp Springs, Maryland

Corresponding author address: Youlong Xia, NOAA/Geophysical Fluid Dynamics Laboratory, Princeton University, Forrestal Campus, Princeton, NJ 08542. Email: youlong.xia@noaa.gov

Abstract

Calibration of land surface models improves simulations of surface water and energy fluxes and provides important information for water resources management. However, most calibration studies focus on local sites and/or small catchments because of computational limitations, lack of atmospheric forcing data, and lack of observed water and energy fluxes. Even though a well-established streamflow gauge network exists, its data are not well suited to the calibration of land surface models in cold regions because of large systematic precipitation biases. This study provides a newly developed method to adjust systematic precipitation biases arising from gauge undercatch (e.g., wind blowing, wetting loss, and evaporation loss). The new method estimates model parameter and precipitation errors simultaneously through the use of observed annual streamflow in the northeastern United States. The results show that this method improves streamflow simulations and gives a reasonable estimate for systematic precipitation bias. In addition, the impacts of model parameter errors on the calibration of the Land Dynamics (LaD) model and on the estimation of systematic precipitation biases are investigated in the northeastern United States.

* Current affiliation: Environmental Modeling Center, NOAA/National Centers for Environmental Prediction, Camp Springs, Maryland

Corresponding author address: Youlong Xia, NOAA/Geophysical Fluid Dynamics Laboratory, Princeton University, Forrestal Campus, Princeton, NJ 08542. Email: youlong.xia@noaa.gov

Save
  • Adam, J. C., and Lettenmaier D. P. , 2003: Adjustment of global gridded precipitation for systematic bias. J. Geophys. Res., 108 .4257, doi:10.1029/2002JD002499.

    • Search Google Scholar
    • Export Citation
  • Adam, J. C., Clark E. A. , Lettenmaier D. P. , and Wood E. F. , 2006: Correction of global precipitation products for orographic effects. J. Climate, 19 , 1538.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., and Coauthors, 2004: The new GFDL global atmosphere and land model AM2–LM2: Evaluation with prescribed SST simulations. J. Climate, 17 , 46414673.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bowling, L., and Coauthors, 2003: Simulation of high-latitude hydrological processes in the Torne-Kalix basin: PILPS Phase 2(e). 1: Experiment description and summary intercomparisons. Global Planet. Change, 38 , 130.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cosgrove, B. A., and Coauthors, 2003: Real-time and retrospective forcing in the North American Land Data Assimilation System (NLDAS) project. J. Geophys. Res., 108 .8842, doi:10.1029/2002JD003118.

    • Search Google Scholar
    • Export Citation
  • Forland, E. J., and Coauthors, 1996: Manual for operational correction of Nordic precipitation data. Norwegian Meteorological Institute Rep. 24/96, KLIMA, 66 pp.

  • Golubev, V. S., Groisman P. Ya , and Quayle R. G. , 1992: An evaluation of the United States standard 8-in. nonrecording raingage at the Valdai polygon, Russia. J. Atmos. Oceanic Technol., 9 , 624629.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goodison, B. E., Louie P. Y. T. , and Yang D. , 1998: WMO solid precipitation intercomparison. World Meteorological Organization Final Rep. WMO/TD-872, 212 pp.

  • Gupta, H. V., Bastidas L. A. , Sorooshian S. , Shuttleworth W. J. , and Yang Z-L. , 1999: Parameter estimation of a land surface scheme using multicriteria methods. J. Geophys. Res., 104 , 1949119503.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ingber, L., 1989: Very fast simulated reannealing. Math. Comput. Model., 12 , 967993.

  • Jackson, C., Xia Y. , Sen M. K. , and Stoffa P. , 2003: Optimal parameter and uncertainty estimation of a land surface model: A case study using data from Cabauw, Netherlands. J. Geophys. Res., 108 .4583, doi:10.1029/2002JD002991.

    • Search Google Scholar
    • Export Citation
  • Legates, D. R., and Willmott C. J. , 1990: Mean seasonal and spatial variability in gauge-corrected, global precipitation. Int. J. Climatol., 10 , 111127.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leplastrier, M., Pitman A. J. , Gupta H. , and Xia Y. , 2002: Exploring the relationship between complexity and performance in a land surface model using the multicriteria method. J. Geophys. Res., 107 .4443, doi:10.1029/2001JD000931.

    • Search Google Scholar
    • Export Citation
  • Lohmann, D., and Coauthors, 2004: Streamflow and water balance intercomparisons of four land surface models in the North American Land Data Assimilation System project. J. Geophys. Res., 109 .D07S91, doi:10.1029/2003JD003517.

    • Search Google Scholar
    • Export Citation
  • Manabe, S., 1969: Climate and the ocean circulation. I: The atmospheric circulation and the hydrology of the earth’s surface. Mon. Wea. Rev., 97 , 739774.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matthews, E., 1983: Global vegetation and land use: New high-resolution data bases for climate studies. J. Climate Appl. Meteor., 22 , 474487.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Metropolis, N., Rosenbluth A. , Rosenbluth M. , Teller A. , and Teller E. , 1953: Equation of state calculations by fast computing machines. J. Chem. Phys., 21 , 10871092.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Milly, P. C. D., and Dunne K. A. , 2002a: Macroscale water fluxes. 1. Quantifying errors in the estimation of basin mean precipitation. Water Resour. Res., 38 .1205, doi:10.1029/2001WR000759.

    • Search Google Scholar
    • Export Citation
  • Milly, P. C. D., and Dunne K. A. , 2002b: Macroscale water fluxes. 2. Water and energy supply control of their interannual variability. Water Resour. Res., 38 .1206, doi:10.1029/2001WR000760.

    • Search Google Scholar
    • Export Citation
  • Milly, P. C. D., and Shmakin A. B. , 2002a: Global modeling of land water and energy balances. Part I: The land dynamics (LaD) model. J. Hydrometeor., 3 , 283299.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Milly, P. C. D., and Shmakin A. B. , 2002b: Global modeling of land water and energy balances. Part II: Land-characteristic contributions to spatial variability. J. Hydrometeor., 3 , 301310.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitchell, K. E., and Coauthors, 2004: The multi-institution North America Land Data Assimilation System (NLDAS): Utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system. J. Geophys. Res., 109 .D07S90, doi:10.1029/2003JD003823.

    • Search Google Scholar
    • Export Citation
  • Oki, T., Nishimura T. , and Dirmeyer P. , 1999: Assessment of annual runoff from land surface models using Total Runoff Integrating Pathways (TRIP). J. Meteor. Soc. Japan, 77 , 235255.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rubel, F., and Hantel M. , 1999: Correction of daily rain gauge measurements in the Baltic Sea drainage basin. Nord. Hydrol., 30 , 191208.

  • Sellers, P. J., Shuttleworth W. J. , Dorman J. L. , Dalcher A. , and Roberts J. M. , 1989: Calibrating the simple biosphere model for Amazonian tropical forest using field and remote sensing data. Part I: Average calibration with field data. J. Appl. Meteor., 28 , 727759.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sevruk, B., 1982: Methods of correction for systematic error in point precipitation measurement for operational use. Operational Hydrology Rep. 21, Publication 589, 91 pp.

  • Shmakin, A. B., Milly P. C. D. , and Dunne K. A. , 2002: Global modeling of land water and energy balances. Part III: Interannual variability. J. Hydrometeor., 3 , 311321.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ungersboeck, M., Rubel F. , Fuchs T. , and Rudolf B. , 2002: Bias correction of global daily rain gauge measurements. Phys. Chem. Earth, 26 , 411414.

    • Search Google Scholar
    • Export Citation
  • Xia, Y., 2006: Optimization and uncertainty estimates of WMO regression models for the systematic bias adjustment of NLDAS precipitation in the United States. J. Geophys. Res., 111 .D08102, doi:10.1029/2005JD006188.

    • Search Google Scholar
    • Export Citation
  • Xia, Y., Pitman A. J. , Gupta H. V. , Leplastrier M. , Henderson-Sellers A. , and Bastidas L. A. , 2002: Calibrating a land surface model of varying complexity using multicriteria methods and the Cabauw dataset. J. Hydrometeor., 3 , 181194.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xia, Y., Sen M. K. , Jackson C. S. , and Stoffa P. L. , 2004a: Multidataset study of optimal parameter and uncertainty estimation of a land surface model with Bayesian stochastic inversion and multicriteria method. J. Appl. Meteor., 43 , 14771497.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xia, Y., Yang Z-L. , Jackson C. , Stoffa P. L. , and Sen M. K. , 2004b: Impacts of data length on optimal parameter and uncertainty estimation of a land surface model. J. Geophys. Res., 109 .D07101, doi:10.1029/2003JD004419.

    • Search Google Scholar
    • Export Citation
  • Xia, Y., Yang Z-L. , Jackson C. , Stoffa P. L. , and Sen M. K. , 2005: Using different hydrological variables to assess the impacts of atmospheric forcing errors on optimization and uncertainty analysis of the CHASM surface model at a cold catchment. J. Geophys. Res., 110 .D01101, doi:10.1029/2004JD005130.

    • Search Google Scholar
    • Export Citation
  • Yang, D., Goodison B. E. , Metcalfe J. R. , Golubev V. S. , Bates R. , Pangburn T. , and Hanson C. L. , 1998a: Accuracy of NWS 8″ standard nonrecording precipitation gauge: Results and application of WMO intercomparison. J. Atmos. Oceanic Technol., 15 , 5468.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, D., Goodison B. E. , Benson C. S. , and Ishida S. , 1998b: Adjustment of daily precipitation at 10 climate stations in Alaska: Application of WMO intercomparison results. Water Resour. Res., 34 , 241256.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 604 458 26
PDF Downloads 75 14 0