Trends in Land Evapotranspiration over Canada for the Period 1960–2000 Based on In Situ Climate Observations and a Land Surface Model

Richard Fernandes Earth Sciences Sector, Natural Resources Canada, Canada Centre for Remote Sensing, Ottawa, Ontario, Canada

Search for other papers by Richard Fernandes in
Current site
Google Scholar
PubMed
Close
,
Vladimir Korolevych Noetix Research Inc., Ottawa, Ontario, Canada

Search for other papers by Vladimir Korolevych in
Current site
Google Scholar
PubMed
Close
, and
Shusen Wang Earth Sciences Sector, Natural Resources Canada, Canada Centre for Remote Sensing, Ottawa, Ontario, Canada

Search for other papers by Shusen Wang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

An assessment of annual trends in actual evapotranspiration (AET) and associated meteorological inputs is performed at 101 locations across Canada with available long-term hourly surface climate observations to determine if AET in Canada is increasing in relation to observed increases in air temperature. AET was estimated for the dominant land cover class, with representative soil and leaf area index conditions, within a 50 km × 50 km window around each location for the period 1960–2000. The Ecological Assimilation of Land and Climate Observations (EALCO) land surface model, which simulates coupled carbon, energy, and water cycles, was applied to estimate AET on a half-hourly basis at each location using in situ meteorological measurements and ambient atmospheric CO2 concentrations. Increases in annual AET, of up to 0.73% yr−1, were identified at 81 locations, and decreases, of up to 0.25% yr−1, were found at the remaining 20 stations. Statistically significant increasing trends were detected in 35% of the locations with the majority corresponding to Atlantic and Pacific coastal regions. Increasing trends were generally related to increasing temperature and total downwelling surface radiation trends in eastern Canada and increasing temperature, surface radiation, and precipitation trends in western Canada. In sharp contrast to other studies based on simpler AET models, annual AET trends in the prairie climate zone were mixed in terms of increases and decreases with no locations showing statistically significant trends. Future studies focused on scaling AET model estimates to subbasins or basins are required both to account for this spatial variability in soil conditions and to permit water budget closure validation.

Corresponding author address: Richard Fernandes, Earth Sciences Sector, Natural Resources Canada, Canada Centre for Remote Sensing, 588 Booth St., Ottawa, ON K1A 0Y7, Canada. Email: Richard.Fernandes@nrcan.gc.ca

Abstract

An assessment of annual trends in actual evapotranspiration (AET) and associated meteorological inputs is performed at 101 locations across Canada with available long-term hourly surface climate observations to determine if AET in Canada is increasing in relation to observed increases in air temperature. AET was estimated for the dominant land cover class, with representative soil and leaf area index conditions, within a 50 km × 50 km window around each location for the period 1960–2000. The Ecological Assimilation of Land and Climate Observations (EALCO) land surface model, which simulates coupled carbon, energy, and water cycles, was applied to estimate AET on a half-hourly basis at each location using in situ meteorological measurements and ambient atmospheric CO2 concentrations. Increases in annual AET, of up to 0.73% yr−1, were identified at 81 locations, and decreases, of up to 0.25% yr−1, were found at the remaining 20 stations. Statistically significant increasing trends were detected in 35% of the locations with the majority corresponding to Atlantic and Pacific coastal regions. Increasing trends were generally related to increasing temperature and total downwelling surface radiation trends in eastern Canada and increasing temperature, surface radiation, and precipitation trends in western Canada. In sharp contrast to other studies based on simpler AET models, annual AET trends in the prairie climate zone were mixed in terms of increases and decreases with no locations showing statistically significant trends. Future studies focused on scaling AET model estimates to subbasins or basins are required both to account for this spatial variability in soil conditions and to permit water budget closure validation.

Corresponding author address: Richard Fernandes, Earth Sciences Sector, Natural Resources Canada, Canada Centre for Remote Sensing, 588 Booth St., Ottawa, ON K1A 0Y7, Canada. Email: Richard.Fernandes@nrcan.gc.ca

Save
  • Abdul Aziz, O. I., and Burn D. H. , 2006: Trends and variability in the hydrological regime of the Mackenzie River basin. J. Hydrol., 319 , 282294.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Akinremi, O. O., McGinn S. M. , and Cutforth H. W. , 1999: Precipitation trends on the Canadian prairies. J. Climate, 12 , 29963003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnett, T. P., Adam J. C. , and Lettenmaier D. P. , 2005: Potential impacts of a warming climate on water availability in snow-dominated regions. Nature, 438 , 303309.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Betts, A. K., Ball J. H. , and McCaughey J. H. , 2001: Near-surface climate in the boreal forest. J. Geophys. Res., 106 , 3352933541.

  • Bitz, C. M., and Battisti D. S. , 1999: Interannual to decadal variability in climate and the glacier mass balance in Washington, western Canada, and Alaska. J. Climate, 12 , 31813196.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bonsal, B. R., and Prowse T. D. , 2003: Trends and variability in spring and autumn 0°C-isotherm dates over Canada. Climatic Change, 57 , 341358.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bouchet, R. J., 1963: Evapotranspiration réelle, évapotranspiration potentielle, et production agricole. Ann. Agron., 14 , 743824.

  • Brutsaert, W., 2006: Indications of increasing land surface evaporation during the second half of the 20th century. Geophys. Res. Lett., 33 .L20403, doi:10.1029/2006GL027532.

    • Search Google Scholar
    • Export Citation
  • Brutsaert, W., and Stricker H. , 1979: An advection–aridity approach to estimate actual regional evapotranspiration. Water Resour. Res., 15 , 443450.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bugmann, H., and Cramer W. , 1992: Improving the behaviour of forest gap models along drought gradients. For. Ecol. Manage., 103 , 247263.

    • Search Google Scholar
    • Export Citation
  • Cao, Z., Wang M. , Proctor B. A. , Strong G. S. , Stewart R. E. , Ritchie H. , and Burford J. E. , 2002: On the physical processes associated with the water budget and discharge of the Mackenzie basin during the 1994/95 water year. Atmos.–Ocean, 40 , 125143.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, J. M., Chen X. , Ju W. , and Geng X. , 2005: Distributed hydrological model for mapping evapotranspiration using remote sensing inputs. J. Hydrol., 305 , 1539.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Z., Grasby S. E. , and Osadetz K. G. , 2004: Relation between climate variability and groundwater levels in the upper carbonate aquifer, southern Manitoba, Canada. J. Hydrol., 290 , 4362.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, S., and Kulkarni T. , Eds., cited. 2006: Water management and climate change in the Okanagan Basin, Climate Change Action Fund (Project A206). Natural Resources Canada. [Available online at http://adaptation.nrcan.gc.ca/projdb/index_e.php?class=2.].

  • Demuth, M. N., and Pietronio A. , 2003: The impact of climate change on the glaciers of the Canadian Rocky Mountain eastern slopes and implications for water resource-related adaptation in the Canadian prairies. Phase I—Headwaters of the northern Saskatchewan River basin. Geological Survey of Canada, Open File 4322, 111 pp.

  • Déry, S. J., and Wood E. F. , 2005: Decreasing river discharge in northern Canada. Geophys. Res. Lett., 32 .L10401, doi:10.1029/2005GL022845.

    • Search Google Scholar
    • Export Citation
  • Dingman, S. L., 2002: Physical Hydrology. Prentice-Hall, 646 pp.

  • Eaton, A. K., Rouse W. R. , Lafleur P. M. , Marsh P. , and Blanken P. D. , 2001: Surface energy balance of the western and central Canadian Subarctic: Variations of energy balance among five major terrain types. J. Climate, 14 , 36923703.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Environment Canada, 1994: Canadian monthly climate Data and 1961-1990 normals on CD-ROM. Environment Canada, Atmospheric Environment Service, CD-ROM.

  • Environment Canada, 2003a: CWEEDS—Canadian weather energy and engineering data set. Files, prepared by WATSUM Simulation Laboratory, Waterloo, Ontario, and the National Research Council of Canada. Environment Canada, CD-ROM.

  • Environment Canada, 2003b: CDCD—Canadian daily Climate Data. 2 vols. Environment Canada, Meteorological Service of Canada, CD-ROM.

  • Fernandes, R., Butson C. , Leblanc S. , and Latifovic R. , 2003: Landsat 5 TM and Landsat-7 ETM+ based accuracy assessment of leaf area index products for Canada derived from SPOT-4 vegetation data. Can. J. Remote Sens., 29 , 241258.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gan, T. Y., 1998: Hydroclimatic trends and possible climatic warming in the Canadian prairies. Water Resour. Res., 34 , 30093015.

  • Gelfan, A. N., Pomeroy J. W. , and Kuchment L. S. , 2004: Modeling forest cover influences on snow accumulation, sublimation, and melt. J. Hydrometeor., 5 , 785803.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Golubev, V. S., Lawrimore J. H. , Groisman P. Ya , Speranskaya N. A. , Zhuravin S. A. , Menne M. J. , Peterson T. C. , and Malone R. W. , 2001: Evaporation changes over the contiguous United States and the former USSR: A reassessment. Geophys. Res. Lett., 28 , 26652668.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grant, R. F., and Coauthors, 2005: Intercomparison of techniques to model high temperature effects on CO2 and energy exchange in temperate and boreal coniferous forests. Ecol. Model., 188 , 217252.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grant, R. F., and Coauthors, 2006: Intercomparison of techniques to model water stress effects on CO2 and energy exchange in temperate and boreal deciduous forests. Ecol. Model., 196 , 289312.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hanson, P. J., and Coauthors, 2004: Oak forest carbon and water simulations: Model intercomparisons and evaluations against independent data. Ecol. Monogr., 74 , 443489.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hicke, J. A., Asner G. P. , Randerson J. T. , Tucker C. , Los S. , Birdsey R. , Jenkins J. C. , and Field C. , 2002: Trends in North American net primary productivity derived from satellite observations, 1982-1998. Global Biogeochem. Cycles, 16 .1018, doi:10.1029/2001GB001550.

    • Search Google Scholar
    • Export Citation
  • Hobbins, M. T., Ramirez J. A. , and Brown T. C. , 2004: Trends in pan evaporation and actual evapotranspiration across the coterminuous U.S.: Paradoxical or complementary? Geophys. Res. Lett., 31 .L13503, doi:10.1029/2004GL019846.

    • Search Google Scholar
    • Export Citation
  • Hoffmann, N., and Coauthors, 1998: Climate change and variability: Impacts on Canadian water in responding to global climate change. Canada Country Study: Climate Impacts and Adaptation, G. Koshida and W. Avis, Eds., National Sectoral Issue, Vol. 7, Environment Canada, 120 pp.

    • Search Google Scholar
    • Export Citation
  • Houghton, J. T., Ding Y. , Griggs D. J. , Noguer M. , van der Linden P. J. , Dai X. , Maskell K. , and Johnson C. A. , 2001: Climate Change 2001: The Scientific Basis. Cambridge University Press, 881 pp.

    • Search Google Scholar
    • Export Citation
  • Huntington, T. G., 2006: Evidence for intensification of the global water cycle: Review and synthesis. J. Hydrol., 319 , 8395.

  • Kendall, M. G., 1975: Rank Correlation Methods. Oxford University Press, 202 pp.

  • Kimball, J. S., Zhao M. , McDonald K. C. , Heinsch F. A. , and Running S. , 2004: Satellite observations of annual variability in terrestrial carbon cycles and seasonal growing seasons at high northern latitudes. Proc. SPIE Int. Soc. Opt. Eng., 5654 , 244254.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Suarez M. L. , 1999: A simple framework for examining the interannual variability of land surface moisture fluxes. J. Climate, 12 , 19111917.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laird, N. F., and Kristovich D. A. R. , 2002: Variations of sensible and latent heat fluxes from a great lakes buoy and associated synoptic weather patterns. J. Hydrometeor., 3 , 212.

    • Search Google Scholar
    • Export Citation
  • Latifovic, R., and Pouliot D. , 2005: Multitemporal land cover mapping for Canada: Methodology and products. Can. J. Remote Sens., 31 , 347363.

  • Latifovic, R., and Coauthors, 2005: Generating historical AVHRR 1 km baseline satellite data records over Canada suitable for climate change studies. Can. J. Remote Sens., 31 , 324346.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lofgren, B. M., and Zhu Y. , 2000: Surface energy fluxes on the Great Lakes based on satellite observed surface temperatures 1992 to 1995. J. Great Lakes Res., 26 , 305314.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maurer, E. P., Wood A. W. , Adam J. C. , Lettenmaier D. P. , and Nijssen B. , 2002: A long-term hydrologically based dataset of land surface fluxes and states for the conterminous United States. J. Climate, 15 , 32373251.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mekis, É, and Hogg W. D. , 1999: Rehabilitation and analysis of Canadian daily precipitation time series. Atmos.–Ocean, 37 , 5385.

  • Milly, P. C. D., and Dunne K. A. , 2001: Trends in evaporation and surface cooling in the Mississippi River basin. Geophys. Res. Lett., 28 , 12191222.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Milly, P. C. D., and Dunne K. A. , 2002: Macroscale water fluxes. 2. Water and energy supply control of their interannual variability. Water Resour. Res., 38 .1206, doi:10.1029/2001WR000760.

    • Search Google Scholar
    • Export Citation
  • Mitchell, T. D., and Jones P. D. , 2004: An improved method of constructing a database of monthly climate observations and associated high resolution grids. Int. J. Climatol., 25 , 693712.

    • Search Google Scholar
    • Export Citation
  • Morton, F. I., 1983: Operational estimates of actual evapotranspiration and their significance to the science and practice of hydrology. J. Hydrol., 66 , 176.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nagarajan, B., Yau M. K. , and Schuepp P. H. , 2005: The effects of small water bodies on the atmospheric heat and water budgets over the Mackenzie River basin. Hydrol. Processes, 18 , 913938.

    • Search Google Scholar
    • Export Citation
  • Pauwels, V. R. N., and Wood E. F. , 1999: A soil-vegetation-atmosphere transfer scheme for the modeling of water and energy balance processes in high latitudes. 2. Application and validation. J. Geophys. Res., 104 , D22. 2782327839.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Priestley, C. H. B., and Taylor R. J. , 1972: On the assessment of surface heat flux and evaporation using large-scale parameters. Mon. Wea. Rev., 100 , 8192.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rivard, C., and Coauthors, 2003: Climate related trends in groundwater recharge in eastern Canada. Natural Resources Canada, Climate Change Impact and Adaptations Secretariat, 46 pp.

  • Rodell, M., Famiglietti J. S. , Chen J. , Seneviratne S. I. , Viterbo P. , Holl S. , and Wilson C. R. , 2004: Basin scale estimates of evapotranspiration using GRACE and other observations. Geophys. Res. Lett., 31 .L20504, doi:10.1029/2004GL020873.

    • Search Google Scholar
    • Export Citation
  • Rouse, W. R., Oswald C. J. , Binyamin J. , Spence C. , Schertzer W. M. , Blanken P. D. , Brussiers N. , and Duguay C. R. , 2005: The role of northern lakes in a regional energy balance. J. Hydrometeor., 6 , 291305.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scanlon, B. R., Healy R. , and Cook P. G. , 2002: Choosing appropriate techniques for quantifying groundwater recharge. Hydrogeol. J., 10 , 1839.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schindler, D. W., and Donahue W. F. , 2006: An impending water crisis in Canada’s western prairie provinces. Proc. Natl. Acad. Sci. USA, 103 , 72107216.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., Bromwich D. H. , Clark M. P. , Etringer A. J. , Zhang T. , and Lammers R. , 2003: Large-scale hydro-climatology of the terrestrial Arctic drainage system. J. Geophys. Res., 108 .8160, doi:10.1029/2001JD000919.

    • Search Google Scholar
    • Export Citation
  • Soil Landscapes of Canada Working Group, cited. 2006: Soil Landscapes of Canada v3.1. Agriculture and Agri-Food Canada. Digital map and database at 1:1 million scale. [Available online at http://sis.agr.gc.ca/cansis/nsdb/slc/v3.1/intro.html.].

  • Su, F., Adam J. C. , Trenberth K. E. , and Lettenmaier D. P. , 2006: Evaluation of surface water fluxes of the pan-Arctic land region with a land surface model and ERA-40 reanalysis. J. Geophys. Res., 111 .D05110, doi:10.1029/2005JD006387.

    • Search Google Scholar
    • Export Citation
  • Thornthwaite, C. W., 1948: An approach toward a rational classification of climate. Geogr. Rev., 38 , 5594.

  • Thornthwaite, C. W., and Mather J. R. , 1957: Instructions and tables for computing potential evapotranspiration and the water balance. Publ. Climatol., 10 .311 pp.

    • Search Google Scholar
    • Export Citation
  • Theil, H., 1950: A rank-invariant method of linear and polynomial regression analysis. Indagationes Math., 12 , 8591.

  • Walter, M. T., Wilks D. S. , Parlange J-Y. , and Schneider R. L. , 2004: Increasing evapotranspiration from the conterminous United States. J. Hydrometeor., 5 , 405408.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, S., 2005: Dynamics of land surface albedo for a boreal forest and its simulation. Ecol. Model., 183 , 477494.

  • Wang, S., Grant R. F. , Verseghy D. L. , and Black T. A. , 2002: Modelling carbon-coupled energy and water dynamics of a boreal aspen forest in a general circulation model land surface scheme. Int. J. Climatol., 22 , 12491265.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, S., Trishchenko A. P. , and Sun X. , 2007: Simulation of canopy radiation transfer and surface albedo in the EALCO model. Climate Dyn., 29 , 615632.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wild, M., Ohmura A. , and Gilgen H. , 2004: On the consistency of trends in radiation and temperature records and implications for the global hydrological cycle. Geophys. Res. Lett., 31 .L11201, doi:10.1029/2003GL019188.

    • Search Google Scholar
    • Export Citation
  • Wild, M., and Coauthors, 2005: From dimming to brightening: Decadal changes in solar radiation at earth’s surface. Science, 308 , 847850.

  • Zhang, X., Vincent L. A. , Hogg W. D. , and Niitsoo A. , 2000: Temperature and precipitation trends in Canada during 20th century. Atmos.–Ocean, 38 , 395429.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, X., Harvey K. D. , Hogg W. D. , and Yuzyk T. R. , 2001: Trends in Canadian streamflow. Water Resour. Res., 37 , 987998.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1913 1255 32
PDF Downloads 437 63 0