Role of Retrospective Forecasts of GCMs Forced with Persisted SST Anomalies in Operational Streamflow Forecasts Development

A. Sankarasubramanian Department of Civil, Construction, and Environmental Engineering, North Carolina State University at Raleigh, Raleigh, North Carolina

Search for other papers by A. Sankarasubramanian in
Current site
Google Scholar
PubMed
Close
,
Upmanu Lall Department of Earth and Environmental Engineering, Columbia University, New York, New York

Search for other papers by Upmanu Lall in
Current site
Google Scholar
PubMed
Close
, and
Susan Espinueva Philippine Atmospheric, Geophysical, and Astronomical Services Administration, Quezon City, Philippines

Search for other papers by Susan Espinueva in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Seasonal streamflow forecasts contingent on climate information are essential for water resources planning and management as well as for setting up contingency measures during extreme years. In this study, operational streamflow forecasts are developed for a reservoir system in the Philippines using ECHAM4.5 precipitation forecasts (EPF) obtained using persisted sea surface temperature (SST) scenarios. Diagnostic analyses on SST conditions show that the tropical SSTs influence the streamflow during extreme years, whereas the local SSTs (0°–25°N, 115°–130°E) account for streamflow variability during normal years. Given that the EPF, local, and tropical SST conditions are spatially correlated, principal components regression (PCR) is employed to downscale the GCM-predicted precipitation fields and SST anomalies to monthly streamflow forecasts and to update them every month within the season using the updated EPF and SST conditions. These updated forecasts improve the prediction of monthly streamflows within the season in comparison to the skill of the monthly streamflow forecasts issued at the beginning of the season. It is also shown that the streamflow forecasting model developed using EPF under persisted SST conditions performs well upon employing EPF obtained under predicted SSTs as predictor. This has potential implications in the development of operational streamflow forecasts and statistical downscaling, which requires adequate years of retrospective GCM forecasts for recalibration. Finally, the study also shows that predicting the seasonal streamflow using the monthly precipitation forecasts reproduces the observed seasonal total better than the conventional approach of using seasonal precipitation forecasts to predict the seasonal streamflow.

Corresponding author address: A. Sankarasubramanian, Department of Civil, Construction, and Environmental Engineering, North Carolina State University at Raleigh, Raleigh, NC 27695-7908. Email: sankar_arumugam@ncsu.edu

Abstract

Seasonal streamflow forecasts contingent on climate information are essential for water resources planning and management as well as for setting up contingency measures during extreme years. In this study, operational streamflow forecasts are developed for a reservoir system in the Philippines using ECHAM4.5 precipitation forecasts (EPF) obtained using persisted sea surface temperature (SST) scenarios. Diagnostic analyses on SST conditions show that the tropical SSTs influence the streamflow during extreme years, whereas the local SSTs (0°–25°N, 115°–130°E) account for streamflow variability during normal years. Given that the EPF, local, and tropical SST conditions are spatially correlated, principal components regression (PCR) is employed to downscale the GCM-predicted precipitation fields and SST anomalies to monthly streamflow forecasts and to update them every month within the season using the updated EPF and SST conditions. These updated forecasts improve the prediction of monthly streamflows within the season in comparison to the skill of the monthly streamflow forecasts issued at the beginning of the season. It is also shown that the streamflow forecasting model developed using EPF under persisted SST conditions performs well upon employing EPF obtained under predicted SSTs as predictor. This has potential implications in the development of operational streamflow forecasts and statistical downscaling, which requires adequate years of retrospective GCM forecasts for recalibration. Finally, the study also shows that predicting the seasonal streamflow using the monthly precipitation forecasts reproduces the observed seasonal total better than the conventional approach of using seasonal precipitation forecasts to predict the seasonal streamflow.

Corresponding author address: A. Sankarasubramanian, Department of Civil, Construction, and Environmental Engineering, North Carolina State University at Raleigh, Raleigh, NC 27695-7908. Email: sankar_arumugam@ncsu.edu

Save
  • Barnston, A. G., Mason S. J. , Goddard L. , DeWitt D. G. , and Zebiak S. E. , 2003: Multimodel ensembling in seasonal climate forecasting at IRI. Bull. Amer. Meteor. Soc., 84 , 17831796.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buishand, T. A., Shabalova M. V. , and Brandsma T. , 2004: On the choice of the temporal aggregation level for statistical downscaling of precipitation. J. Climate, 17 , 18161827.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cayan, D. R., Redmond K. T. , and Riddle L. G. , 1999: ENSO and hydrologic extremes in the western United States. J. Climate, 12 , 28812893.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cherchi, A., and Navarra A. , 2003: Reproducibility and predictability of the Asian summer monsoon in the ECHAM4-GCM. Climate Dyn., 20 , 365379.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, M. P., and Hay L. E. , 2004: Use of medium-range numerical weather prediction model output to produce forecasts of streamflow. J. Hydrometeor., 5 , 1532.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dettinger, M. D., and Diaz H. F. , 2000: Global characteristics of stream flow seasonality and variability. J. Hydrometeor., 1 , 289310.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dillon, W. R., and Goldstein M. , 1984: Multivariate Analysis: Methods and Applications. Wiley, 587 pp.

  • Draper, N. R., and Smith H. , 1998: Applied Regression Analysis. 3rd ed. Wiley Interscience, 706 pp.

  • Gadgil, S., and Sajani S. , 1998: Monsoon precipitation in the AMIP runs. Climate Dyn., 14 , 659689.

  • Gangopadhyay, S., Clark M. , and Rajagopalan B. , 2005: Statistical downscaling using K-nearest neighbors. Water Resour. Res., 41 .W02024, doi:10.1029/2004WR003444.

    • Search Google Scholar
    • Export Citation
  • Georgakakos, K. P., 2003: Probabilistic climate-model diagnostics for hydrologic and water resources impact studies. J. Hydrometeor., 4 , 92105.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Georgakakos, K. P., and Smith D. E. , 2001: Soil moisture tendencies into the next century for the conterminous United States. J. Geophys. Res., 106 , 2736727382.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goddard, L., and Mason S. , 2002: Sensitivity of seasonal climate forecasts to persisted SST anomalies. Climate Dyn., 19 , 619632.

  • Goddard, L., Barnston A. G. , and Mason S. J. , 2003: Evaluation of the IRI’s “net assessment” seasonal climate forecasts 1997–2001. Bull. Amer. Meteor. Soc., 84 , 17611781.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grantz, K., Rajagopalan B. , Clark M. , and Zagona E. , 2005: A technique for incorporating large-scale climate information in basin-scale ensemble streamflow forecasts. Water Resour. Res., 41 .W10410, doi:10.1029/2004WR003467.

    • Search Google Scholar
    • Export Citation
  • Guetter, A. K., and Georgakakos K. P. , 1996: Are the El Niño and La Niña predictors of the Iowa River seasonal flow? J. Appl. Meteor., 35 , 690705.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamlet, A. F., and Lettenmaier D. P. , 1999: Columbia River streamflow forecasting based on ENSO and PDO climate signals. ASCE J. Water Resour. Plann. Manage., 125 , 333341.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hidalgo, H. G., Piechota T. C. , and Dracup J. A. , 2000: Alternative principal components regression procedures for dendrohydrologic reconstructions. Water Resour. Res., 36 , 32413250.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, D., Wang H. J. , Drange H. , and Lang X. M. , 2004: Instability of the East Asian summer monsoon–ENSO relationship in a coupled global atmosphere–ocean GCM (in Chinese). Chin. J. Geophys., 47 , 976981.

    • Search Google Scholar
    • Export Citation
  • Kane, R. P., 1999: El Niño timings and rainfall extremes in India, Southeast Asia and China. Int. J. Climatol., 19 , 653672.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaplan, A., Cane M. A. , Kushnir Y. , Clement A. C. , Blumenthal M. B. , and Rajagopalan B. , 1998: Analyses of global sea surface temperature 1856–1991. J. Geophys. Res., 103 , 1856718590.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kripalani, R. H., and Kulkarni A. , 1997: Rainfall variability over South-east Asia—Connections with Indian monsoon and ENSO extremes: New perspectives. Int. J. Climatol., 17 , 11551168.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, K. K., Rajagopalan B. , and Cane M. A. , 1999: On the weakening relationship between the Indian monsoon and ENSO. Science, 284 , 21562159.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Landman, W. A., and Goddard L. , 2002: Statistical recalibration of GCM forecasts over southern Africa using model output statistics. J. Climate, 15 , 20382055.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, K-M., and Wu H. T. , 2001: Principal modes of rainfall–SST variability of the Asian summer monsoon: A reassessment of the monsoon–ENSO relationship. J. Climate, 14 , 28802895.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leung, L. R., Hamlet A. F. , Lettenmaier D. P. , and Kumar A. , 1999: Simulations of the ENSO hydroclimate signals in the Pacific Northwest Columbia River basin. Bull. Amer. Meteor. Soc., 80 , 23132329.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, C. Y., Sun S. Q. , and Mu M. Q. , 2001: Origin of the TBO-interaction between anomalous East-Asian winter monsoon and ENSO cycle. Adv. Atmos. Sci., 18 , 554566.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, S., and Goddard L. , 2005: Retrospective forecasts with the ECHAM4.5 AGCM. IRI Tech. Rep. 05-02, 16 pp.

  • Maurer, E. P., and Lettenmaier D. P. , 2004: Potential effects of long-lead hydrologic predictability on Missouri River main-stem reservoirs. J. Climate, 17 , 174186.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nobre, P., Moura A. D. , and Sun L. Q. , 2001: Dynamical downscaling of seasonal climate prediction over Nordeste Brazil with ECHAM3 and NCEP’s regional spectral models at IRI. Bull. Amer. Meteor. Soc., 82 , 27872796.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Piechota, T. C., and Dracup J. A. , 1996: Drought and regional hydrologic variation in the United States: Associations with the El Niño-Southern Oscillation. Water Resour. Res., 32 , 13591374.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Piechota, T. C., Chiew F. H. S. , Dracup J. A. , and McMahon T. A. , 2001: Development of exceedance probability streamflow forecast. J. Hydrol. Eng., 6 , 2028.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rajagopalan, B., Lall U. , and Zebiak S. E. , 2002: Categorical climate forecasts through regularization and optimal combination of multiple GCM ensembles. Mon. Wea. Rev., 130 , 17921811.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmusson, E. M., and Carpenter T. H. , 1982: Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño. Mon. Wea. Rev., 110 , 354384.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roads, J., and Coauthors, 2003: International Research Institute/Applied Research Centers (IRI/ARCs) regional model intercomparison over South America. J. Geophys. Res., 108 .4425, doi:10.1029/2002JD003201.

    • Search Google Scholar
    • Export Citation
  • Robertson, A. W., Kirshner S. , and Smyth P. , 2004: Downscaling of daily rainfall occurrence over northeast Brazil using a hidden Markov model. J. Climate, 17 , 44074424.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roeckner, E., and Coauthors, 1996: The atmospheric general circulation model ECHAM4: Model description and simulation of present-day climate. Max-Planck-Institut für Meteorologie Rep. 218, Hamburg, Germany, 90 pp.

  • Ropelewski, C. F., and Halpert M. S. , 1987: Global and regional scale precipitation patterns associated with the El Niño/Southern Oscillation. Mon. Wea. Rev., 115 , 16061626.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sankarasubramanian, A., and Lall U. , 2003: Flood quantiles in a changing climate: Seasonal forecasts and causal relations. Water Resour. Res., 39 .1134, doi:10.1029/2002WR001593.

    • Search Google Scholar
    • Export Citation
  • Singhrattna, N., Rajagopalan B. , Kumar K. K. , and Clark M. , 2005: Interannual and interdecadal variability of Thailand summer monsoon season. J. Climate, 18 , 16971708.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Souza Filho, F. A., and Lall U. , 2003: Seasonal to interannual ensemble streamflow forecasts for Ceara, Brazil: Applications of a multivariate, semiparametric algorithm. Water Resour. Res., 39 .1307, doi:10.1029/2002WR001373.

    • Search Google Scholar
    • Export Citation
  • Tippett, M. K., Goddard L. , and Barnston A. G. , 2005: Statistical–dynamical seasonal forecasts of central-southwest Asian winter precipitation. J. Climate, 18 , 18311843.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and Guillemot C. J. , 1996: Physical processes involved in the 1988 drought and 1993 floods in North America. J. Climate, 9 , 12881298.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van den Dool, H. M., 1994: Searching for analogues, how long must we wait? Tellus, 46A , 314324.

  • Wang, B., Wu R. G. , and Lau K-M. , 2001: Interannual variability of the Asian summer monsoon: Contrasts between the Indian and the western North Pacific–East Asian monsoons. J. Climate, 14 , 40734090.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webster, P. J., Magaña V. O. , Palmer T. N. , Shukla J. , Thomas R. A. , Yanai M. , and Yasunari T. , 1998: Monsoons: Processes, predictability, and the prospects for prediction. J. Geophys. Res., 103 , 1445114510.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 1995: Statistical Methods in the Atmospheric Sciences: An Introduction. Academic Press, 467 pp.

  • Wood, A. W., Maurer E. P. , Kumar A. , and Lettenmaier D. P. , 2002: Long-range experimental hydrologic forecasting for the eastern United States. J. Geophys. Res., 107 .4429, doi:10.1029/2001JD000659.

    • Search Google Scholar
    • Export Citation
  • Wood, A. W., Kumar A. , and Lettenmaier D. P. , 2005: A retrospective assessment of National Centers for Environmental Prediction climate model-based ensemble hydrologic forecasting in the western United States. J. Geophys. Res., 110 .D04105, doi:10.1029/2004JD004508.

    • Search Google Scholar
    • Export Citation
  • Yang, S., Lau K-M. , and Kim K-M. , 2002: Variations of the East Asian jet stream and Asian–Pacific–American winter climate anomalies. J. Climate, 15 , 306325.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, Z., Barron E. J. , Yarnal B. , Lakhtakia M. N. , White R. A. , Pollard D. , and Miller D. A. , 2002: Evaluation of basin-scale hydrologic response to a multi-storm simulation. J. Hydrol., 257 , 212225.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 292 84 4
PDF Downloads 169 62 2