An Analysis of the Soil Moisture Feedback on Convective and Stratiform Precipitation

Lorenzo Alfieri Dipartimento di Idraulica, Trasporti ed Infrastrutture Civili, Politecnico di Torino, Turin, Italy

Search for other papers by Lorenzo Alfieri in
Current site
Google Scholar
PubMed
Close
,
Pierluigi Claps Dipartimento di Idraulica, Trasporti ed Infrastrutture Civili, Politecnico di Torino, Turin, Italy

Search for other papers by Pierluigi Claps in
Current site
Google Scholar
PubMed
Close
,
Paolo D’Odorico Department of Environmental Sciences, University of Virginia, Charlottesville, Virginia

Search for other papers by Paolo D’Odorico in
Current site
Google Scholar
PubMed
Close
,
Francesco Laio Dipartimento di Idraulica, Trasporti ed Infrastrutture Civili, Politecnico di Torino, Turin, Italy

Search for other papers by Francesco Laio in
Current site
Google Scholar
PubMed
Close
, and
Thomas M. Over Department of Geology/Geography, Eastern Illinois University, Charleston, Illinois

Search for other papers by Thomas M. Over in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Land–atmosphere interactions in midlatitude continental regions are particularly active during the warm season. It is still unclear whether and under what circumstances these interactions may involve positive or negative feedbacks between soil moisture conditions and rainfall occurrence. Assessing such feedbacks is crucially important to a better understanding of the role of land surface conditions on the regional dynamics of the water cycle. This work investigates the relationship between soil moisture and subsequent precipitation at the daily time scale in a midlatitude continental region. Sounding data from 16 locations across the midwestern United States are used to calculate two indices of atmospheric instability—namely, the convective available potential energy (CAPE) and the convective inhibition (CIN). These indices are used to classify rainfall as convective or stratiform. Correlation analyses and uniformity tests are then carried out separately for these two rainfall categories, to assess the dependence of rainfall occurrence on antecedent soil moisture conditions, using simulated soil moisture values. The analysis suggests that most of the positive correlation observed between soil moisture and subsequent precipitation is due to the autocorrelation of long stratiform events. The authors found both areas with positive and areas with negative feedback on convective precipitation. This behavior is likely due to the contrasting effects of soil moisture conditions on convective phenomena through changes in surface temperature and the supply of water vapor to the overlying air column. No significant correlation is found between daily rainfall intensity and antecedent simulated soil moisture conditions either for convective or stratiform rainfall.

Corresponding author address: Lorenzo Alfieri, Dipartimento di Idraulica, Trasporti ed Infrastrutture Civili, Politecnico di Torino, C.so Duca degli Abruzzi, 24, 10129 Turin, Italy. Email: lorenzo.alfieri@polito.it

Abstract

Land–atmosphere interactions in midlatitude continental regions are particularly active during the warm season. It is still unclear whether and under what circumstances these interactions may involve positive or negative feedbacks between soil moisture conditions and rainfall occurrence. Assessing such feedbacks is crucially important to a better understanding of the role of land surface conditions on the regional dynamics of the water cycle. This work investigates the relationship between soil moisture and subsequent precipitation at the daily time scale in a midlatitude continental region. Sounding data from 16 locations across the midwestern United States are used to calculate two indices of atmospheric instability—namely, the convective available potential energy (CAPE) and the convective inhibition (CIN). These indices are used to classify rainfall as convective or stratiform. Correlation analyses and uniformity tests are then carried out separately for these two rainfall categories, to assess the dependence of rainfall occurrence on antecedent soil moisture conditions, using simulated soil moisture values. The analysis suggests that most of the positive correlation observed between soil moisture and subsequent precipitation is due to the autocorrelation of long stratiform events. The authors found both areas with positive and areas with negative feedback on convective precipitation. This behavior is likely due to the contrasting effects of soil moisture conditions on convective phenomena through changes in surface temperature and the supply of water vapor to the overlying air column. No significant correlation is found between daily rainfall intensity and antecedent simulated soil moisture conditions either for convective or stratiform rainfall.

Corresponding author address: Lorenzo Alfieri, Dipartimento di Idraulica, Trasporti ed Infrastrutture Civili, Politecnico di Torino, C.so Duca degli Abruzzi, 24, 10129 Turin, Italy. Email: lorenzo.alfieri@polito.it

Save
  • Avissar, R., and Liu Y. , 1996: Three-dimensional numerical study of shallow convective clouds and precipitation induced by land surface forcing. J. Geophys. Res., 101 , 74997518.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Betts, A. K., 2004: Understanding hydrometeorology using global models. Bull. Amer. Meteor. Soc., 85 , 16731688.

  • Betts, A. K., Ball J. H. , Beljaars A. C. M. , Miller M. J. , and Viterbo P. A. , 1996: The land surface-atmosphere interaction: A review based on observational and global modeling perspectives. J. Geophys. Res., 101D , 72097226.

    • Search Google Scholar
    • Export Citation
  • Brubaker, K. L., and Entekhabi D. , 1996: Analysis of feedback mechanisms in land-atmosphere interaction. Water Resour. Res., 32 , 13431357.

  • Brubaker, K. L., Dirmeyer P. A. , Sudradjat A. , Levy B. S. , and Bernal F. , 2001: A 36-yr climatological description of the evaporative sources of warm-season precipitation in the Mississippi River basin. J. Hydrometeor., 2 , 537557.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cook, B. I., Bonan G. , and Levis S. , 2006: Soil moisture feedbacks to precipitation in southern Africa. J. Climate, 19 , 41984206.

  • Dirmeyer, P. A., and Brubaker K. L. , 1999: Contrasting evaporative moisture sources during the drought of 1988 and the flood of 1993. J. Geophys. Res., 104D , 1938319397.

    • Search Google Scholar
    • Export Citation
  • D’Odorico, P., and Porporato A. , 2004: Preferential states in soil moisture and climate dynamics. Proc. Natl. Acad. Sci. USA, 101 , 88488851.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doswell C. A. III, , and Rasmussen E. N. , 1994: The effect of neglecting the virtual temperature correction on CAPE calculations. Wea. Forecasting, 9 , 625629.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eltahir, E. A. B., 1989: A feedback mechanism in annual rainfall, central Sudan. J. Hydrol., 110 , 323334.

  • Eltahir, E. A. B., 1998: A soil moisture-rainfall feedback mechanism. 1. Theory and observations. Water Resour. Res., 34 , 765776.

  • Eltahir, E. A. B., and Bras R. L. , 1996: Precipitation recycling. Rev. Geophys., 34 , 367378.

  • Eltahir, E. A. B., and Pal J. S. , 1996: Relationship between surface conditions and subsequent rainfall in convective storms. J. Geophys. Res., 101D , 2623726246.

    • Search Google Scholar
    • Export Citation
  • Findell, K. L., and Eltahir E. A. B. , 1997: An analysis of the soil moisture-rainfall feedback, based on direct observations from Illinois. Water Resour. Res., 33 , 725736.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Findell, K. L., and Eltahir E. A. B. , 2003a: Atmospheric controls on soil moisture–boundary layer interactions. Part I: Framework development. J. Hydrometeor., 4 , 552569.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Findell, K. L., and Eltahir E. A. B. , 2003b: Atmospheric controls on soil moisture–boundary layer interactions. Part II: Feedbacks within the continental United States. J. Hydrometeor., 4 , 570583.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Georgakakos, K. P., Bae D. H. , and Cayan D. R. , 1995: Hydroclimatology of continental watersheds. 1. Temporal analyses. Water Resour. Res., 31 , 655676.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giorgi, F., Mearns L. O. , Shields C. , and Mayer L. , 1996: A regional model study of the importance of local versus remote controls of the 1988 drought and the 1993 flood over the central United States. J. Climate, 9 , 11501162.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hollinger, S. E., 1995: Midwestern Climate Center Soils Atlas and Database. Illinois State Water Survey, 36 pp.

  • Hollinger, S. E., and Isard S. A. , 1994: A soil moisture climatology of Illinois. J. Climate, 7 , 822833.

  • Jones, C., and Kiniry J. , 1986: Ceres-N Maize: A Simulation Model of Maize Growth and Development. Texas A&M University Press, 194 pp.

  • Kendall, M. G., and Stuart A. , 1977: Inference and Relationship. Vol. 2. The Advanced Theory of Statistics, 4th ed. Griffin, 748 pp.

  • Kochendorfer, J. P., and Ramírez J. A. , 2005: The impact of land–atmosphere interactions on the temporal variability of soil moisture at the regional scale. J. Hydrometeor., 6 , 5367.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Suarez M. J. , 2003: Impact of land surface initialization on seasonal precipitation and temperature prediction. J. Hydrometeor., 4 , 408423.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Suarez M. J. , 2004: Suggestions in the observational record of land–atmosphere feedback operating at seasonal time scales. J. Hydrometeor., 5 , 567572.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., Suarez M. J. , Higgins R. W. , and Van den Dool H. M. , 2003: Observational evidence that soil moisture variations affect precipitation. Geophys. Res. Lett., 30 .1241, doi:10.1029/2002GL016571.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2004: Regions of strong coupling between soil moisture and precipitation. Science, 305 , 11381140.

  • Kunkel, K. E., 1990: Operational soil moisture estimation for the midwestern United States. J. Appl. Meteor., 29 , 11581166.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laio, F., 2004: Cramer–Von Mises and Anderson–Darling goodness of fit tests for extreme value distributions with unknown parameters. Water Resour. Res., 40 .W09308, doi:10.1029/2004WR003204.

    • Search Google Scholar
    • Export Citation
  • Laio, F., and Tamea S. , 2007: Verification tools for probabilistic forecasts of continuous hydrological variables. Hydrol. Earth. Syst. Sci., 11 , 12671277.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lettau, H., Lettau K. , and Molion L. C. B. , 1979: Amazonia’s hydrologic cycle and the role of atmospheric recycling in assessing deforestation effects. Mon. Wea. Rev., 107 , 227238.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moncrieff, M. W., and Miller M. J. , 1976: The dynamics and simulation of tropical cumulonimbus and squall lines. Quart. J. Roy. Meteor. Soc., 102 , 373394.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oglesby, R. J., and Erickson D. J. III, 1989: Soil moisture and the persistence of North American drought. J. Climate, 2 , 13621380.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pan, Z., Seagal M. , Turner R. , and Takle E. , 1995: Model simulation of impacts of transient surface wetness on summer rainfall in the United States Midwest during drought and flood years. Mon. Wea. Rev., 123 , 15751581.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pielke R. A. Sr., , Liston G. E. , Eastman J. L. , Lu L. , and Coughenour M. , 1999: Seasonal weather predictions as an initial value problem. J. Geophys. Res., 104D , 1946319479.

    • Search Google Scholar
    • Export Citation
  • Rind, D., 1982: The influence of ground moisture conditions in North America on summer climate as modeled in the GISS GCM. Mon. Wea. Rev., 110 , 14871494.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robock, A., Vinnikov K. Y. , Srinivasan G. , Entin J. K. , Hollinger S. E. , Speranskaya N. A. , Liu S. , and Namkhai A. , 2000: The Global Soil Moisture Data Bank. Bull. Amer. Meteor. Soc., 81 , 12811299.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodriguez-Iturbe, I., Entekhabi D. , and Bras R. L. , 1991: Nonlinear dynamics of soil moisture at climate scales. 1. Stochastic analysis. Water Resour. Res., 27 , 18991906.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodriguez-Iturbe, I., D’Odorico P. , and Rinaldo A. , 1998: Possible self-organizing dynamics for land–atmosphere interactions. J. Geophys. Res., 103D , 2307123077.

    • Search Google Scholar
    • Export Citation
  • Salvucci, G. D., Saleem J. A. , and Kaufmann R. , 2002: Investigating soil moisture feedbacks on precipitation with tests of Granger causality. Adv. Water Resour., 25 , 13051312.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schär, C., Lüthi D. , Beyerle U. , and Heise E. , 1999: The soil–precipitation feedback: A process study with a regional climate model. J. Climate, 12 , 722741.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seneviratne, S. I., Lüthi D. , Litschi M. , and Schär C. , 2006: Land–atmosphere coupling and climate change in Europe. Nature, 443 , 205209.

  • Shukla, J., and Mintz Y. , 1982: Influence of land-surface evapo-transpiration on the earth’s climate. Science, 215 , 14981501.

  • Trenberth, K. E., 1999: Atmospheric moisture recycling: Role of advection and local evaporation. J. Climate, 12 , 13681381.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, E. R., and Renno N. , 1993: An analysis of the conditional instability of the tropical atmosphere. Mon. Wea. Rev., 121 , 2136.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 903 312 11
PDF Downloads 582 154 9