Radiative Transfer Modeling of a Coniferous Canopy Characterized by Airborne Remote Sensing

Richard Essery Institute of Geography and Earth Sciences, University of Wales, Aberystwyth, Aberystwyth, United Kingdom

Search for other papers by Richard Essery in
Current site
Google Scholar
PubMed
Close
,
Peter Bunting Institute of Geography and Earth Sciences, University of Wales, Aberystwyth, Aberystwyth, United Kingdom

Search for other papers by Peter Bunting in
Current site
Google Scholar
PubMed
Close
,
Aled Rowlands Institute of Geography and Earth Sciences, University of Wales, Aberystwyth, Aberystwyth, United Kingdom

Search for other papers by Aled Rowlands in
Current site
Google Scholar
PubMed
Close
,
Nick Rutter Institute of Geography and Earth Sciences, University of Wales, Aberystwyth, Aberystwyth, United Kingdom

Search for other papers by Nick Rutter in
Current site
Google Scholar
PubMed
Close
,
Janet Hardy Cold Regions Research and Engineering Laboratory, Hanover, New Hampshire

Search for other papers by Janet Hardy in
Current site
Google Scholar
PubMed
Close
,
Rae Melloh Cold Regions Research and Engineering Laboratory, Hanover, New Hampshire

Search for other papers by Rae Melloh in
Current site
Google Scholar
PubMed
Close
,
Tim Link University of Idaho, Moscow, Idaho

Search for other papers by Tim Link in
Current site
Google Scholar
PubMed
Close
,
Danny Marks Northwest Watershed Research Center, Boise, Idaho

Search for other papers by Danny Marks in
Current site
Google Scholar
PubMed
Close
, and
John Pomeroy Centre for Hydrology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada

Search for other papers by John Pomeroy in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Solar radiation beneath a forest canopy can have large spatial variations, but this is frequently neglected in radiative transfer models for large-scale applications. To explicitly model spatial variations in subcanopy radiation, maps of canopy structure are required. Aerial photography and airborne laser scanning are used to map tree locations, heights, and crown diameters for a lodgepole pine forest in Colorado as inputs to a spatially explicit radiative transfer model. Statistics of subcanopy radiation simulated by the model are compared with measurements from radiometer arrays, and scaling of spatial statistics with temporal averaging and array size is discussed. Efficient parameterizations for spatial averages and standard deviations of subcanopy radiation are developed using parameters that can be obtained from the model or hemispherical photography.

** Current affiliation: School of GeoSciences, Grant Institute, University of Edinburgh, Edinburgh, United Kingdom

Corresponding author address: Richard Essery, School of GeoSciences, Grant Institute, University of Edinburgh, Edinburgh EH9 3JW, United Kingdom. Email: richard.essery@ed.ac.uk

This article included in the The Cold Land Processes Experiment (CLPX) special collection.

Abstract

Solar radiation beneath a forest canopy can have large spatial variations, but this is frequently neglected in radiative transfer models for large-scale applications. To explicitly model spatial variations in subcanopy radiation, maps of canopy structure are required. Aerial photography and airborne laser scanning are used to map tree locations, heights, and crown diameters for a lodgepole pine forest in Colorado as inputs to a spatially explicit radiative transfer model. Statistics of subcanopy radiation simulated by the model are compared with measurements from radiometer arrays, and scaling of spatial statistics with temporal averaging and array size is discussed. Efficient parameterizations for spatial averages and standard deviations of subcanopy radiation are developed using parameters that can be obtained from the model or hemispherical photography.

** Current affiliation: School of GeoSciences, Grant Institute, University of Edinburgh, Edinburgh, United Kingdom

Corresponding author address: Richard Essery, School of GeoSciences, Grant Institute, University of Edinburgh, Edinburgh EH9 3JW, United Kingdom. Email: richard.essery@ed.ac.uk

This article included in the The Cold Land Processes Experiment (CLPX) special collection.

Save
  • Battaglia, M. A., Mou P. , Palik B. , and Mitchell R. J. , 2002: The effect of spatially variable overstory on the understory light environment of an open-canopied longleaf pine forest. Can. J. For. Res., 32 , 19841991.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bunting, P., and Lucas R. , 2006: The delineation of tree crowns in Australian mixed species forests using hyperspectral Compact Airborne Spectorgraphic Imager (CASI) data. Remote Sens. Environ., 101 , 230248.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, A. T. C., Foster J. L. , and Hall D. K. , 1996: Effects of forest on the snow parameters derived from microwave measurements during the BOREAS winter field campaign. Hydrol. Processes, 10 , 15651574.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, J. M., Rich P. M. , Gower S. T. , Norman J. M. , and Plummer S. , 1997: Leaf area index of boreal forests: Theory, techniques, and measurements. J. Geophys. Res., 102 , 2942929443.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Courbaud, B., de Coligny F. , and Cordonnier T. , 2003: Simulating radiation distribution in a heterogeneous Norway spruce forest on a slope. Agric. For. Meteor., 116 , 118.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Culvenor, D. S., 2002: TIDA: An algorithm for the delineation of tree crowns in high spatial resolution remotely sensed imagery. Comput. Geosci., 28 , 3344.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dozier, J., and Frew J. , 1990: Rapid calculation of terrain parameters for radiation modelling from digital elevation data. IEEE Trans. Geosci. Remote Sens., 28 , 963969.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Erbs, D. G., Klein S. A. , and Duffie J. A. , 1982: Estimation of the diffuse radiation fraction for hourly, daily and monthly-average global radiation. Sol. Atmos. Energy, 28 , 293302.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Essery, R. L. H., and Pomeroy J. W. , 2004: Implications of spatial distributions of snow mass and melt energy on snowcover depletion: Theoretical considerations. Ann. Glaciol., 38 , 261265.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Faria, D., Pomeroy J. W. , and Essery R. L. H. , 2000: Effect of covariance between ablation and snow water equivalent on depletion of snow-covered area in a forest. Hydrol. Processes, 14 , 26832695.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frazer, G. W., Canham C. D. , and Lertzman K. P. , 1999: Gap Light Analyzer (GLA), Version 2.0: Users manual and program documentation. Simon Fraser University, Burnaby, BC, Canada, and the Institute of Ecosystem Studies, Millbrook, NY, 40 pp.

  • Gougeon, F. A., 1995: A crown-following approach to automatic delineation of individual tree crowns in high spatial resolution aerial images. Can. J. Remote Sens., 21 , 274284.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hardy, J. P., Melloh R. , Koenig G. , Marks D. , Winstral A. , Pomeroy J. W. , and Link T. , 2004: Solar radiation transmission through conifer canopies. Agric. For. Meteor., 126 , 257270.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaufmann, M. R., Edminster C. B. , and Troendle C. A. , 1982: Leaf area determinations for subalpine tree species in the central Rocky Mountains. USDA Forest Service Research Paper RM-238, U.S. Department of Agriculture, 7 pp.

  • Klein, A., Hall D. K. , and Riggs G. A. , 1998: Improving snow cover mapping in forests through the use of a canopy reflectance model. Hydrol. Processes, 12 , 17231744.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, X., Strahler A. H. , and Woodcock C. E. , 1995: A hybrid geometric optical–radiative transfer approach for modelling albedo and directional reflectance of discontinuous canopies. IEEE Trans. Geosci. Remote Sens., 33 , 466480.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Link, T. E., Marks D. , and Hardy J. P. , 2004: A deterministic method to characterize canopy radiative transfer properties. Hydrol. Processes, 18 , 35833594.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, J., Melloh R. A. , Woodcock C. E. , Davis R. E. , and Ochs E. S. , 2004: The effect of viewing geometry and topography on viewable gap fractions through forest canopies. Hydrol. Processes, 18 , 35953607.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Magnussen, S., Eggermont P. , and LaRiccia V. N. , 1999: Recovering tree heights from airborne laser scanner data. For. Sci., 45 , 407422.

    • Search Google Scholar
    • Export Citation
  • Melloh, R., Ballard J. , Hardy J. , Woodcock C. , Liu J. , Smith J. , Koenig G. , and Davis R. , 2003: Spatial distribution of canopy gaps in lodgepole pine forest. Proc. 60th Eastern Snow Conf., Sherbrooke, QC, Canada, Easter Snow Conference, 111–123.

  • Miller, S. L., 2003: CLPX-airborne: Infrared orthophotography and LiDAR topographic mapping. National Snow and Ice Data Center, Boulder, CO, digital media. [Available online at http://nsidc.org/data/docs/daac/nsidc0157_clpx_lidar/.].

  • Nijssen, B., and Lettenmaier D. , 1999: A simplified approach for predicting shortwave radiation transfer through boreal forest canopies. J. Geophys. Res., 104 , 2785927868.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nilson, T., 1971: A theoretical analysis of the frequency of gaps in plant stands. Agric. Meteor., 8 , 2538.

  • Pinty, B., and Coauthors, 2004: Radiation Transfer Model Intercomparison (RAMI) exercise: Results from the second phase. J. Geophys. Res., 109 .D06210, doi:10.1029/2003JD004252.

    • Search Google Scholar
    • Export Citation
  • Pollock, R., 1996: The automatic recognition of individual trees in aerial images of forests based on a synthetic tree crown image model. Ph.D. thesis, University of British Columbia, 189 pp.

  • Pomeroy, J. W., and Dion K. , 1996: Winter radiation extinction and reflection in a boreal pine canopy: Measurements and modelling. Hydrol. Processes, 10 , 15911608.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pomeroy, J. W., Rowlands A. , Hardy J. , Link T. , Marks D. , Essery R. , Sicart J-E. , and Ellis C. , 2008: Spatial variability of shortwave irradiance for snowmelt in forests. J. Hydrometeor., in press.

    • Search Google Scholar
    • Export Citation
  • Price, M. A., 1997: A simplified scalable shading model for radiation at the forest floor. M.S. thesis, Dept. of Mathematics, Oregon State University, 43 pp.

  • Riaño, D., Valladares F. , Condés S. , and Chuvieco E. , 2004: Estimation of leaf area index and covered ground from airborne laser scanner (LiDAR) in two contrasting forests. Agric. For. Meteor., 124 , 269275.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rich, P. M., 1990: Characterizing plant canopies with hemispherical photographs. Remote Sens. Rev., 5 , 1329.

  • Satterlund, D. R., 1983: Forest shadows: How much shelter in a shelterwood? For. Ecol. Manage., 5 , 2737.

  • Sellers, P. J., Mintz Y. , Sud Y. C. , and Dalcher A. , 1986: A simple biosphere model for use within general circulation models. J. Atmos. Sci., 43 , 505531.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheng, Y. W., Gong P. , and Biging G. S. , 2001: Model-based conifer-crown surface reconstruction from high-resolution aerial images. Photogramm. Eng. Remote Sens., 67 , 957965.

    • Search Google Scholar
    • Export Citation
  • Song, C., and Band L. E. , 2004: MVP: A model to simulate the spatial patterns of photosynthetically active radiation under discrete forest canopies. Can. J. For. Res., 34 , 11921203.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stadt, K. J., Leiffers V. J. , Hall R. J. , and Messier C. , 2005: Spatially explicit modelling of PAR transmission and growth of Picea glauca and Abies balsamea in the boreal forests of Alberta and Quebec. Can. J. For. Res., 35 , 112.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Strand, E., Smith A. M. S. , Bunting S. C. , Vierling L. A. , Hann D. B. , and Gessler P. E. , 2006: Wavelet estimation of vegetation spatial patterns in multitemporal aerial photography. Int. J. Remote Sens., 27 , 20492054.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Verseghy, D. L., McFarlane N. A. , and Lazare M. , 1993: CLASS A Canadian land surface scheme for GCMs, II. Vegetation model and coupled runs. Int. J. Climatol., 13 , 347370.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woo, M-K., and Giesbrecht M. A. , 2000: Simulation of snowmelt in a subarctic spruce woodland: 1. Tree model. Water Resour. Res., 36 , 22752285.

  • Yang, R., Friedl M. A. , and Ni W. , 2001: Parameterization of shortwave radiation fluxes for nonuniform vegetation canopies in land surface models. J. Geophys. Res., 106 , 1427514286.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 836 295 18
PDF Downloads 471 138 19