Spatial Estimation of Reference Evapotranspiration in Andalusia, Spain

Karl Vanderlinden Centro Las Torres-Tomejil, IFAPA, Junta de Andalucía, Seville, Spain

Search for other papers by Karl Vanderlinden in
Current site
Google Scholar
PubMed
Close
,
Juan Vicente Giráldez Departamento de Agronomía, Universidad de Córdoba/IAS-CSIC, Córdoba, Spain

Search for other papers by Juan Vicente Giráldez in
Current site
Google Scholar
PubMed
Close
, and
Marc Van Meirvenne Department of Soil Management and Soil Care, Ghent University, Ghent, Belgium

Search for other papers by Marc Van Meirvenne in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Knowledge of the spatial and temporal distribution of reference crop evapotranspiration (ET0) is of interest for regional water resources management, especially in areas of the world where fine-tuning of agricultural water demands over large areas is required. This study provides a strategy for mapping ET0 in regions with low meteorological data availability. For Andalusia, Spain, it involves estimating ET0 from temperature data using a locally calibrated version of the Hargreaves equation and the application of geostatistical interpolation techniques that take into account elevation as secondary information. Average annual ET0 at 191 observatories (with elevation between 0 and 1260 m) ranged from 954 to 1460 mm, with an average of 1283 mm, a standard deviation of 99 mm, and a correlation coefficient with elevation of −0.86. Simple kriging with varying local means (SKlm) and kriging with an external drift (KED)—two methods that take into account elevation as secondary information—increased spatial model efficiency by 30% as compared to ordinary kriging. SKlm was used for mapping ET0 since it better reproduced the descriptive statistics of the point data and yielded slightly smaller root-mean-squared estimation errors than KED. The spatial correlation of annual and monthly ET0 was well structured and anisotropic. Short-range variability, for separation distances up to 20–40 km, showed a strong linear increase with distance while long-range variability, up to 130–250 km, increased more gently with distance. The results of this structural analysis are relevant for the spatial optimization of a recently installed automated ET0 observation network, while obtained maps constitute a valuable tool for regional water resources evaluation, planning, and management and contribute to optimizing water use in local irrigated agriculture.

Corresponding author address: Karl Vanderlinden, Centro Las Torres-Tomejil, IFAPA, Junta de Andalucía, Ctra. Sevilla-Cazalla, km 12, 2, 41200 Alcalá del Río, Seville, Spain. Email: karl.vanderlinden@juntadeandalucia.es

Abstract

Knowledge of the spatial and temporal distribution of reference crop evapotranspiration (ET0) is of interest for regional water resources management, especially in areas of the world where fine-tuning of agricultural water demands over large areas is required. This study provides a strategy for mapping ET0 in regions with low meteorological data availability. For Andalusia, Spain, it involves estimating ET0 from temperature data using a locally calibrated version of the Hargreaves equation and the application of geostatistical interpolation techniques that take into account elevation as secondary information. Average annual ET0 at 191 observatories (with elevation between 0 and 1260 m) ranged from 954 to 1460 mm, with an average of 1283 mm, a standard deviation of 99 mm, and a correlation coefficient with elevation of −0.86. Simple kriging with varying local means (SKlm) and kriging with an external drift (KED)—two methods that take into account elevation as secondary information—increased spatial model efficiency by 30% as compared to ordinary kriging. SKlm was used for mapping ET0 since it better reproduced the descriptive statistics of the point data and yielded slightly smaller root-mean-squared estimation errors than KED. The spatial correlation of annual and monthly ET0 was well structured and anisotropic. Short-range variability, for separation distances up to 20–40 km, showed a strong linear increase with distance while long-range variability, up to 130–250 km, increased more gently with distance. The results of this structural analysis are relevant for the spatial optimization of a recently installed automated ET0 observation network, while obtained maps constitute a valuable tool for regional water resources evaluation, planning, and management and contribute to optimizing water use in local irrigated agriculture.

Corresponding author address: Karl Vanderlinden, Centro Las Torres-Tomejil, IFAPA, Junta de Andalucía, Ctra. Sevilla-Cazalla, km 12, 2, 41200 Alcalá del Río, Seville, Spain. Email: karl.vanderlinden@juntadeandalucia.es

Save
  • Allen, R. G., Pereira L. S. , Raes D. , and Smith M. , 1998: Crop evapotranspiration: Guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper 56, Food and Agriculture Organization of the United Nations, 370 pp.

    • Search Google Scholar
    • Export Citation
  • Barry, R. G., 1981: Mountain Weather and Climate. Methuen, 313 pp.

  • Bras, R. L., and Rodríguez-Iturbe I. , 1976: Network design for the estimation of areal mean of rainfall events. Water Resour. Res., 12 , 11851195.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • De Gruijter, J., Brus D. , Bierkens M. , and Knotters M. , 2006: Sampling for Natural Resource Monitoring. Springer, 332 pp.

  • Deutsch, C. V., and Journel A. G. , 1998: GSLIB: Geostatistical Software Library and User’s Guide. 2nd ed. Oxford University Press, 369 pp.

    • Search Google Scholar
    • Export Citation
  • Doorenbos, J., 1976: Agro-meteorological field stations. FAO Irrigation and Drainage Paper 27, Food and Agriculture Organization of the United Nations, 94 pp.

    • Search Google Scholar
    • Export Citation
  • Goovaerts, P., 1997: Geostatistics for Natural Resources Evaluation. Oxford University Press, 483 pp.

  • Goovaerts, P., 1999: Using elevation to aid the geostatistical mapping of rainfall erosivity. Catena, 34 , 227242.

  • Goovaerts, P., 2000: Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall. J. Hydrol., 228 , 113129.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hargreaves, G. H., 1994: Defining and using reference evapotranspiration. J. Irrig. Drain. Eng., 120 , 11321139.

  • Hargreaves, G. H., and Allen R. G. , 2003: History and evaluation of Hargreaves evapotranspiration equation. J. Irrig. Drain. Eng., 129 , 5363.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hargreaves, G. L., Hargreaves G. H. , and Riley J. P. , 1985: Irrigation water requirements for Senegal River basin. J. Irrig. Drain. Eng., 111 , 265275.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IFAPA, cited. 2007: Red de Información Agroclimática. [Available online at http://juntadeandalucia.es/innovacioncienciayempresa/ifapa/ria/servlet/FrontController.].

  • Jensen, M. E., Burman R. D. , and Allen R. G. , 1990: Evapotranspiration and Irrigation Water Requirements: A Manual. American Society of Civil Engineers, 332 pp.

    • Search Google Scholar
    • Export Citation
  • Kim, J., Guo Q. , Baldocchi D. D. , Leclerc M. Y. , Xu L. , and Schmid H. P. , 2006: Upscaling fluxes from tower to landscape: Overlaying flux footprints on high-resolution (IKONOS) images of vegetation cover. Agric. For. Meteor., 136 , 132146.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lebel, T., Bastin G. , Obled C. , and Creutin J. D. , 1987: On the accuracy of areal rainfall estimation: A case study. Water Resour. Res., 23 , 21232134.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Legates, D. R., and McCabe G. J. Jr., 1999: Evaluating the use of “goodness-of-fit” measures in hydrologic and hydroclimatic model validation. Water Resour. Res., 35 , 233242.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maheras, P., 1989: Principal component analysis of western Mediterranean air temperature variations 1866–1985. Theor. Appl. Climatol., 39 , 137145.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martínez-Cob, A., 1996: Multivariate geostatistical analysis of evapotranspiration and precipitation in mountainous terrain. J. Hydrol., 174 , 1935.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matheron, G., 1965: La Théorie des Variables Régionalisées et Ses Applications. (Regionalized Variable Theory and Its Applications). Masson, 305 pp.

    • Search Google Scholar
    • Export Citation
  • Nash, J. E., and Sutcliffe J. V. , 1970: River flow forecasting through conceptual models. Part I: A discussion of principles. J. Hydrol., 10 , 282290.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nieto, S., Frías M. D. , and Rodríguez-Puebla C. , 2004: Assessing two different climatic models and the NCEP–NCAR reanalysis data for the description of winter precipitation in the Iberian Peninsula. Int. J. Climatol., 24 , 361376.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Panatier, Y., 1996: VARIOWIN: Software for Spatial Data Analysis in 2D. Springer-Verlag, 91 pp.

  • Pardo-Igúzquiza, E., 1998: Optimal selection of number and location of rainfall gauges for areal rainfall estimation using geostatistics and simulated annealing. J. Hydrol., 210 , 206220.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Penman, H. L., 1948: Natural evaporation from open water, bare soil, and grass. Proc. Roy. Soc. London, 193A , 120148.

  • Phillips, D. L., Dolph J. , and Marks D. , 1992: A comparison of geostatistical procedures for spatial analysis of precipitation in mountainous terrain. Agric. For. Meteor., 58 , 119141.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmid, H. P., 2002: Footprint modeling for vegetation atmospheric exchange studies: A review and perspective. Agric. For. Meteor., 113 , 159183.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serrano, A., García J. A. , Mateos V. L. , Cancillo M. L. , and Garrido J. , 1999: Monthly modes of variation of precipitation over the Iberian Peninsula. J. Climate, 12 , 28942919.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shuttleworth, W. J., 1993: Evaporation. Handbook of Hydrology, D. R. Maidment, Ed., McGraw-Hill, 4.1–4.53.

  • Stein, A., Staritsky I. G. , Bouma J. , van Eijnsbergen A. C. , and Bregt A. K. , 1991: Simulation of moisture deficits and areal interpolation by universal cokriging. Water Resour. Res., 27 , 19631973.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thornthwaite, C. W., 1948: An approach toward a rational classification of climate. Geogr. Rev., 38 , 5594.

  • Vanderlinden, K., 2002: Análisis de procesos hidrológicos a diferentes escalas espacio-temporales (Analysis of hydrological processes at different spatio-temporal scales). Ph.D. dissertation, University of Córdoba, 303 pp.

    • Search Google Scholar
    • Export Citation
  • Vanderlinden, K., Giráldez J. V. , and Van Meirvenne M. , 2004: Assessing reference evapotranspiration by the Hargreaves method in southern Spain. J. Irrig. Drain. Eng., 130 , 184191.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vanderlinden, K., Giráldez J. V. , and Van Meirvenne M. , 2005: Soil water-holding capacity assessment in terms of the average annual water balance in southern Spain. Vadose Zone J., 4 , 317328.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Meirvenne, M., Scheldeman K. , Baert G. , and Hofman G. , 1994: Quantification of soil textural fractions of Bas-Zaire using soil map polygons and/or point observations. Geoderma, 62 , 6982.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Viau, A. A., Vogt J. V. , and Paquet F. , 2000: Évaluation de la représentativité spatiale thermique des stations météorologiques du réseau d’Andalousie (Evaluation of the thermic spatial representativity of the meteorological stations in the region of Andalusia). Int. J. Remote Sens., 21 , 30833113.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 424 197 5
PDF Downloads 239 63 6