An Improved Method for Estimating Global Evapotranspiration Based on Satellite Determination of Surface Net Radiation, Vegetation Index, Temperature, and Soil Moisture

Kaicun Wang Department of Geography, University of Maryland, College Park, College Park, Maryland, and Laboratory for Middle Atmosphere and Global Environment Observation, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Kaicun Wang in
Current site
Google Scholar
PubMed
Close
and
Shunlin Liang Department of Geography, University of Maryland, College Park, College Park, Maryland

Search for other papers by Shunlin Liang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A simple and accurate method to estimate regional or global latent heat of evapotranspiration (ET) from remote sensing data is essential. The authors proposed a method in an earlier study that utilized satellite-determined surface net radiation (Rn), a vegetation index, and daytime-averaged/daily maximum air temperature (Ta) or land surface temperature (Ts) data. However, the influence of soil moisture (SM) on ET was not considered and is addressed in this paper by incorporating the diurnal Ts range (DTsR). ET, measured by the energy balance Bowen ratio method at eight enhanced facility sites on the southern Great Plains in the United States and by the eddy covariance method at four AmeriFlux sites during 2001–06, is used to validate the improved method. Site land cover varies from grassland, native prairie, and cropland to deciduous forest and evergreen forest. The correlation coefficient between the measured and predicted 16-day daytime-averaged ET using a combination of Rn, enhanced vegetation index (EVI), daily maximum Ts, and DTsR is about 0.92 for all the sites, the bias is −1.9 W m−2, and the root-mean-square error (RMSE) is 28.6 W m−2. The sensitivity of the revised method to input data error is small. Implemented here is the revised method to estimate global ET using diurnal Ta range (DTaR) instead of DTsR because DTsR data are not available yet, although DTaR-estimated ET is less accurate than DTsR-estimated ET. Global monthly ET is calculated from 1986 to 1995 at a spatial resolution of 1° × 1° from the International Satellite Land Surface Climatology Project (ISLSCP) Initiative II global interdisciplinary monthly dataset and is compared with the 15 land surface model simulations of the Global Soil Wetness Project-2. The results of the comparison of 118 months of global ET show that the bias is 4.5 W m−2, the RMSE is 19.8 W m−2, and the correlation coefficient is 0.82. Incorporating DTaR distinctively improves the accuracy of the estimate of global ET.

Corresponding author address: Kaicun Wang, Department of Geography, University of Maryland, College Park, College Park MD 20742. Email: kcwang@umd.edu

Abstract

A simple and accurate method to estimate regional or global latent heat of evapotranspiration (ET) from remote sensing data is essential. The authors proposed a method in an earlier study that utilized satellite-determined surface net radiation (Rn), a vegetation index, and daytime-averaged/daily maximum air temperature (Ta) or land surface temperature (Ts) data. However, the influence of soil moisture (SM) on ET was not considered and is addressed in this paper by incorporating the diurnal Ts range (DTsR). ET, measured by the energy balance Bowen ratio method at eight enhanced facility sites on the southern Great Plains in the United States and by the eddy covariance method at four AmeriFlux sites during 2001–06, is used to validate the improved method. Site land cover varies from grassland, native prairie, and cropland to deciduous forest and evergreen forest. The correlation coefficient between the measured and predicted 16-day daytime-averaged ET using a combination of Rn, enhanced vegetation index (EVI), daily maximum Ts, and DTsR is about 0.92 for all the sites, the bias is −1.9 W m−2, and the root-mean-square error (RMSE) is 28.6 W m−2. The sensitivity of the revised method to input data error is small. Implemented here is the revised method to estimate global ET using diurnal Ta range (DTaR) instead of DTsR because DTsR data are not available yet, although DTaR-estimated ET is less accurate than DTsR-estimated ET. Global monthly ET is calculated from 1986 to 1995 at a spatial resolution of 1° × 1° from the International Satellite Land Surface Climatology Project (ISLSCP) Initiative II global interdisciplinary monthly dataset and is compared with the 15 land surface model simulations of the Global Soil Wetness Project-2. The results of the comparison of 118 months of global ET show that the bias is 4.5 W m−2, the RMSE is 19.8 W m−2, and the correlation coefficient is 0.82. Incorporating DTaR distinctively improves the accuracy of the estimate of global ET.

Corresponding author address: Kaicun Wang, Department of Geography, University of Maryland, College Park, College Park MD 20742. Email: kcwang@umd.edu

Save
  • Aires, F., Prigent C. , and Rossow W. , 2004: Temporal interpolation of global surface skin temperature diurnal cycle over land under clear and cloudy conditions. J. Geophys. Res., 109 .D04313, doi:10.1029/2003JD003527.

    • Search Google Scholar
    • Export Citation
  • Anderson, M. C., Norman J. M. , Diak G. R. , Kustas W. P. , and Mecikalski J. R. , 1997: A two-source time-integrated model for estimating surface fluxes using thermal infrared remote sensing. Remote Sens. Environ., 60 , 195216.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baldocchi, D., and Coauthors, 2001: FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bull. Amer. Meteor. Soc., 82 , 24152434.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bastiaanssen, W. G. M., Menenti M. , Feddes R. A. , and Holtslag A. A. M. , 1998: A remote sensing surface energy balance algorithm for land (SEBAL): 1. Formulation. J. Hydrol., 212 , 198212.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., 2004: Understanding hydrometeorology using global models. Bull. Amer. Meteor. Soc., 85 , 16731688.

  • Betts, A. K., and Jakob C. , 2002: Evaluation of the diurnal cycle of precipitation, surface thermodynamics, and surface fluxes in the ECMWF model using LBA data. J. Geophys. Res., 107 .8045, doi:10.1029/2001JD000427.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., Ball J. H. , and Viterbo P. , 2003: Evaluation of the ERA-40 surface water budget and surface temperature for the Mackenzie River basin. J. Hydrometeor., 4 , 11941211.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Betts, A. K., Zhao M. , Dirmeyer P. A. , and Beljaars A. C. M. , 2006: Comparison of ERA40 and NCEP/DOE near-surface data sets with other ISLSCP-II data sets. J. Geophys. Res., 111 .D22S04, doi:10.1029/2006JD007174.

    • Search Google Scholar
    • Export Citation
  • Brown, M. E., Pinzón J. E. , Didan K. , Morisette J. T. , and Tucker C. J. , 2006: Evaluation of the consistency of long-term NDVI time series derived from AVHRR, SPOT-Vegetation, SeaWiFS, MODIS, and Landsat ETM+ sensors. IEEE Trans. Geosci. Remote Sens., 44 , 17871793.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Caselles, V., Artigao M. M. , Hurtado E. , Coll C. , and Brasa A. , 1998: Mapping actual evapotranspiration by combining Landsat TM and NOAA-AVHRR images: Application to the Barrax area, Albacete, Spain. Remote Sens. Environ., 63 , 110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cleugh, H. A., Leuning R. , Mu Q. , and Running S. W. , 2007: Regional evaporation estimates from flux tower and MODIS satellite data. Remote Sens. Environ., 106 , 285304.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coll, C., Caselles V. , Galve J. M. , Valor E. , Niclos R. , Sanchez J. M. , and Rivas R. , 2005: Ground measurements for the validation of land surface temperatures derived from AATSR and MODIS data. Remote Sens. Environ., 97 , 288300.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davies, J. A., and Allen C. D. , 1973: Equilibrium, potential, and actual evaporation from cropped surfaces in southern Ontario. J. Appl. Meteor., 12 , 649657.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Detto, M., Montaldo N. , Albertson J. D. , Mancini M. , and Katul G. , 2006: Soil moisture and vegetation controls on evapotranspiration in a heterogeneous Mediterranean ecosystem on Sardinia, Italy. Water Resour. Res., 42 .W08419, doi:10.1029/2005WR004693.

    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., Guo Z. , and Gao X. , 2004: Comparison, validation, and transferability of eight multiyear global soil wetness products. J. Hydrometeor., 5 , 10111033.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., Gao X. , Zhao M. , Guo Z. , Oki T. , and Hanasaki N. , 2006: GSWP-2: Multimodel analysis and implications for our perception of the land surface. Bull. Amer. Meteor. Soc., 87 , 13811397.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drexler, J., Snyder R. , Spano D. , and Paw K. T. , 2004: A review of models and micrometeorological methods used to estimate wetland evapotranspiration. Hydrol. Process., 18 , 20712101.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fensholt, R., Sandholt I. , and Stisen S. , 2006: Evaluating MODIS, MERIS, and VEGETATION vegetation indices using in situ measurements in a semiarid environment. IEEE Trans. Geosci. Remote Sens., 44 , 17741786.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Friedl, M. A., 2002: Forward and inverse modeling of land surface energy balance using surface temperature measurements. Remote Sens. Environ., 79 , 344354.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Friedl, M. A., and Coauthors, 2002: Global land cover mapping from MODIS: Algorithms and early results. Remote Sens. Environ., 83 , 287302.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gallo, K., Ji L. , Reed B. , Eidenshink J. , and Dwyer J. , 2005: Multi-platform comparisons of MODIS and AVHRR normalized difference vegetation index data. Remote Sens. Environ., 99 , 221231.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, Z., 2005: Determination of soil heat flux in a Tibetan Plateau short-grass prairie. Bound.-Layer Meteor., 114 , 165178.

  • Göttsche, F. M., and Olesen F. K. , 2001: Modelling of diurnal cycles of brightness temperature extracted from METEOSAT data. Remote Sens. Environ., 76 , 337348.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goward, S. N., Waring R. H. , Dye D. G. , and Yang J. , 1994: Ecological remote sensing at OTTER: Satellite macroscale observations. Ecol. Appl., 4 , 322343.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gu, L., and Coauthors, 2006: Direct and indirect effects of atmospheric conditions and soil moisture on surface energy partitioning revealed by a prolonged drought at a temperate forest site. J. Geophys. Res., 111 .D16102, doi:10.1029/2006JD007161.

    • Search Google Scholar
    • Export Citation
  • Hall, F. G., and Coauthors, 2006: ISLSCP Initiative II global data sets: Surface boundary conditions and atmospheric forcings for land–atmosphere studies. J. Geophys. Res., 111 .D22S01, doi:10.1029/2006JD007366.

    • Search Google Scholar
    • Export Citation
  • Hansen, M. C., DeFries R. S. , Townshend J. R. G. , and Sohlberg R. , 2000: Global land cover classification at 1 km spatial resolution using a classification tree approach. Int. J. Remote Sens., 21 , 13311364.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huete, A., Didan K. , Miura T. , Rodriguez E. P. , Gao X. , and Ferreira L. G. , 2002: Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ., 83 , 195213.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Idso, S. B., Jackson R. Y. , and Reginato R. J. , 1975: Estimating evaporation: A technique adaptable to remote sensing. Science, 189 , 991992.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, L., and Islam S. , 2001: Estimation of surface evaporation map over southern Great Plains using remote sensing data. Water Resour. Res., 37 , 329340.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, M., 2000: Interpolation of surface radiative temperature measured from polar orbiting satellites to a diurnal cycle. 2. Cloudy-pixel treatment. J. Geophys. Res., 105 , 40614076.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, M., and Dickinson R. E. , 1999: Interpolation of surface radiative temperature measured from polar orbiting satellites to a diurnal cycle. 1. Without clouds. J. Geophys. Res., 104 , 21052116.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, M., and Liang S. , 2006: An improved land surface emissivity parameter for land surface models using global remote sensing observations. J. Climate, 19 , 28672881.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kite, G. W., and Droogers P. , 2000: Comparing evapotranspiration estimates from satellites, hydrological models, and field data. J. Hydrol., 229 , 318.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Komatsu, T. S., 2003: Toward a robust phenomenological expression of evaporation efficiency for unsaturated soil surfaces. J. Appl. Meteor., 42 , 13301334.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krishnan, P., Black T. A. , Grant N. J. , Barr A. G. , Hogg E. H. , Jassal R. S. , and Morgenstern K. , 2006: Impact of changing soil moisture distribution on net ecosystem productivity of a boreal aspen forest during and following drought. Agric. For. Meteor., 139 , 208223.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitchell, K. E., and Coauthors, 2004: The multi-institution North American Land Data Assimilation System (NLDAS): Utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system. J. Geophys. Res., 109 .D07S90, doi:10.1029/2003JD003823.

    • Search Google Scholar
    • Export Citation
  • Monin, A. S., and Obukhov A. M. , 1954: Basic laws of turbulent mixing in the atmosphere near the ground. Tr. Geofiz. Inst., Akad. Nauk SSSR, 24 , 163187.

    • Search Google Scholar
    • Export Citation
  • New, M., Hulme M. , and Jones P. , 1999: Representing twentieth-century space–time climate variability. Part I: Development of a 1961–90 mean monthly terrestrial climatology. J. Climate, 12 , 829856.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • New, M., Hulme M. , and Jones P. , 2000: Representing twentieth-century space–time climate variability. Part II: Development of 1901– 96 monthly grids of terrestrial surface climate. J. Climate, 13 , 22172238.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nishida, K., Nemani R. R. , Running S. W. , and Glassy J. M. , 2003: An operational remote sensing algorithm of land surface evaporation. J. Geophys. Res., 108 .4270, doi:10.1029/2002JD002062.

    • Search Google Scholar
    • Export Citation
  • Norman, J. M., Kustas W. P. , and Humes K. S. , 1995: A two-source approach for estimating soil and vegetation energy fluxes in observations of directional radiometric surface temperature. Agric. For. Meteor., 77 , 263293.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Norman, J. M., Kustas W. P. , Prueger J. H. , and Diak G. R. , 2000: Surface flux estimation using radiometric temperature: A dual-temperature-difference method to minimize measurement errors. Water Resour. Res., 36 , 22632274.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oku, Y., and Ishikawa H. , 2004: Estimation of land surface temperature over the Tibetan Plateau using GMS data. J. Appl. Meteor., 43 , 548561.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peres, L. F., and DaCamara C. C. , 2004: Land surface temperature and emissivity estimation based on the two-temperature method: Sensitivity analysis using simulated MSG/SEVIRI data. Remote Sens. Environ., 91 , 377389.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prata, A. J., and Cechet R. P. , 1999: An assessment of the accuracy of land surface temperature determination from the GMS-5 VISSR. Remote Sens. Environ., 67 , 114.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Priestley, C. H. B., and Taylor R. J. , 1972: On the assessment of surface heat flux and evaporation using large-scale parameters. Mon. Wea. Rev., 100 , 8192.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prince, S. D., Goetz S. J. , Dubayah R. O. , Czajkowski K. P. , and Thawley M. , 1998: Inference of surface and air temperature, atmospheric precipitable water and vapor pressure deficit using Advanced Very High Resolution Radiometer satellite observations: Comparison with field observations. J. Hydrol., 212 , 230249.

    • Search Google Scholar
    • Export Citation
  • Robock, A., and Coauthors, 2003: Evaluation of the North American Land Data Assimilation System over the southern Great Plains during the warm season. J. Geophys. Res., 108 .8846, doi:10.1029/2002JD003245.

    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., and Schiffer R. A. , 1999: Advances in understanding clouds from ISCCP. Bull. Amer. Meteor. Soc., 80 , 22612287.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., Walker A. W. , Beuschel D. E. , and Roiter M. D. , 1996: International Satellite Cloud Climatology Project (ISCCP): Documentation of new cloud data sets. World Meteorological Organization Tech. Rep. WMO/TD-737, 115 pp.

  • Rowntree, P. R., 1991: Atmospheric parameterization for evaporation over land: Basic concept and climate modeling aspects. Land Surface Evaporation Fluxes: Their Measurements and Parameterization, T. J. Schmugge and J. C. André, Eds., Springer-Verlag, 5–30.

    • Search Google Scholar
    • Export Citation
  • Salvucci, G. D., 1997: Soil and moisture independent estimation of stage-two evaporation from potential evaporation and albedo or surface temperature. Water Resour. Res., 33 , 111122.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schaake, J. C., and Coauthors, 2004: An intercomparison of soil moisture fields in the North American Land Data Assimilation System (NLDAS). J. Geophys. Res., 109 .D01S90, doi:10.1029/2002JD003309.

    • Search Google Scholar
    • Export Citation
  • Schmugge, T., 1978: Remote sensing of surface soil moisture. J. Appl. Meteor., 17 , 15491557.

  • Sellers, P. J., and Coauthors, 1997: Modeling the exchanges of energy, water, and carbon between continents and the atmosphere. Science, 275 , 502509.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, D., Pinker R. T. , and Basara J. B. , 2004: Land surface temperature estimation from the next generation of geostationary operational environmental satellites: GOES M–Q. J. Appl. Meteor., 43 , 363372.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Timmermans, W. J., Kustas W. P. , Anderson M. C. , and French A. N. , 2007: An intercomparison of the Surface Energy Balance Algorithm for Land (SEBAL) and the Two-Source Energy Balance (TSEB) modeling schemes. Remote Sens. Environ., 108 , 369384.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tucker, C. J., Pinzon J. E. , Brown M. E. , Slayback D. A. , Pak E. W. , Mahoney R. , Vermote E. F. , and El Saleous N. , 2005: An extended AVHRR 8-km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data. Int. J. Remote Sens., 26 , 44854498.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Twine, T., and Coauthors, 2000: Correcting eddy-covariance flux underestimates over a grassland. Agric. For. Meteor., 103 , 279300.

  • Van Leeuwen, W., Huete A. , and Laing T. , 1999: MODIS vegetation index compositing approach: A prototype with AVHRR data. Remote Sens. Environ., 69 , 264280.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Venturini, V., Bisht G. , Islam S. , and Jiang L. , 2004: Comparison of EFs estimated from AVHRR and MODIS sensors over South Florida. Remote Sens. Environ., 93 , 7786.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Verstraeten, W. W., Veroustraete F. , and Feyen J. , 2005: Estimating evapotranspiration of European forests from NOAA imagery at satellite overpass time: Towards an operational processing chain for integrated optical and thermal sensor data products. Remote Sens. Environ., 96 , 256276.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wan, Z., and Dozier J. , 1996: A generalized split-window algorithm for retrieving land-surface temperature from space. IEEE Trans. Geosci. Remote Sens., 34 , 892905.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wan, Z., and Li Z-L. , 1997: A physics-based algorithm for retrieving land-surface emissivity and temperature from EOS/MODIS data. IEEE Trans. Geosci. Remote Sens., 35 , 980996.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wan, Z., Zhang Y. , Zhang Q. , and Li Z-L. , 2002: Validation of the land surface temperature products retrieved from Terra Moderate Resolution Imaging Spectroradiometer data. Remote Sens. Environ., 83 , 163180.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wan, Z., Zhang Y. , Zhang Q. , and Li Z-L. , 2004: Quality assessment and validation of the MODIS global land surface temperature. Int. J. Remote Sens., 25 , 261274.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, K., 2004: A study on surface characteristics over the Tibetan Plateau using satellite remote sensed data and ground-based measurements. Ph.D. dissertation, Peking University, 144 pp.

  • Wang, K., Liu J. , Wan Z. , Wang P. , Sparrow M. , and Haginoya S. , 2005a: Preliminary accuracy assessment of MODIS land surface temperature products at a semi-desert site. Optical Technologies for Atmospheric, Ocean, and Environmental Studies, D. Lu and G. Matvienko, Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 5832), 452–460.

    • Search Google Scholar
    • Export Citation
  • Wang, K., Wan Z. , Wang P. , Sparrow M. , Liu J. , Zhou X. , and Haginoya S. , 2005b: Estimation of surface long wave radiation and broadband emissivity using Moderate Resolution Imaging Spectroradiometer (MODIS) land surface temperature/emissivity products. J. Geophys. Res., 110 .D11109, doi:10.1029/2004JD005566.

    • Search Google Scholar
    • Export Citation
  • Wang, K., Zhou X. , Li W. , Liu J. , and Wang P. , 2005c: Using satellite remotely sensed data to retrieve sensible and latent heat fluxes: A review (in Chinese with English abstract). Adv. Geosci., 20 , 4248.

    • Search Google Scholar
    • Export Citation
  • Wang, K., Li Z. , and Cribb M. , 2006: Estimation of evaporative fraction from a combination of day and night land surface temperature and NDVI: A new method to determine the Priestley–Taylor parameter. Remote Sens. Environ., 102 , 293305.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, K., Wan Z. , Wang P. , Sparrow M. , Liu J. , and Haginoya S. , 2007a: Evaluation and improvement of the MODIS land surface temperature/emissivity products using ground-based measurements at a semi-desert site on the western Tibetan Plateau. Int. J. Remote Sens., 28 , 25492565.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, K., Wang P. , Li Z. , Cribb M. , and Sparrow M. , 2007b: A simple method to estimate actual evapotranspiration from a combination of net radiation, vegetation index, and temperature. J. Geophys. Res., 112 .D15107, doi:10.1029/2006JD008351.

    • Search Google Scholar
    • Export Citation
  • Wilson, K., and Coauthors, 2002: Energy balance closure at FLUXNET sites. Agric. For. Meteor., 113 , 223243.

  • Yang, F., Pan H-L. , Krueger S. K. , Moorthi S. , and Lord S. J. , 2006: Evaluation of the NCEP Global Forecast System at the ARM SGP Site. Mon. Wea. Rev., 134 , 36683690.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, K., Koike T. , Ishikawa H. , and Ma Y. , 2004: Analysis of the surface energy budget at a site of GAME/Tibet using a single-source model. J. Meteor. Soc. Japan, 82 , 131153.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y-C., Rossow W. B. , Lacis A. A. , Oinas V. , and Mishchenko M. I. , 2004: Calculation of radiative fluxes from the surface to top of atmosphere based on ISCCP and other global data sets: Refinements of the radiative transfer model and the input data. J. Geophys. Res., 109 .D19105, doi:10.1029/2003JD004457.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1400 592 24
PDF Downloads 1062 279 23