A Comparison of Soil Moisture Models Using Soil Climate Analysis Network Observations

Lei Meng Department of Geography, Texas A&M University, College Station, Texas

Search for other papers by Lei Meng in
Current site
Google Scholar
PubMed
Close
and
Steven M. Quiring Department of Geography, Texas A&M University, College Station, Texas

Search for other papers by Steven M. Quiring in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Because of the lack of field measurements, models are often used to monitor soil moisture conditions. Therefore, it is important to find a model that can accurately simulate soil moisture under a variety of land surface conditions. In this paper, three models of varying complexities [the Variable Infiltration Capacity (VIC), Decision Support System for Agrotechnology Transfer (DSSAT), and Climatic Water Budget (CWB) models] that are commonly used for simulating soil moisture were evaluated and compared using soil moisture data (1997–2005) from three Soil Climate Analysis Network (SCAN) sites (Bushland, Texas; Prairie View, Texas; Powder Mill, Maryland). Results demonstrated that DSSAT and VIC simulated soil moisture more accurately than CWB at the three SCAN sites. DSSAT and VIC both accurately simulated the annual cycle of soil moisture and the wetting and drying in response to weather conditions, as evidenced by the relatively strong correlations, but could not accurately simulate the actual soil water content in the upper soil layers (the mean coefficients of efficiency E for all DSSAT and VIC simulations were −0.8 and −2.6, respectively). CWB could not accurately simulate soil moisture at any of the SCAN sites. Model performance varied significantly not only from model to model but also from year to year and from location to location. Model sensitivity analysis using the factorial approach suggests that DSSAT is more sensitive than VIC and that model sensitivity varies by locations, indicating that parameter sensitivity is more strongly controlled by climatic gradients than by changes in soil properties.

Corresponding author address: Lei Meng, Department of Geography, Texas A&M University, 3147 TAMU, College Station, TX 77843. Email: leimeng@tamu.edu

Abstract

Because of the lack of field measurements, models are often used to monitor soil moisture conditions. Therefore, it is important to find a model that can accurately simulate soil moisture under a variety of land surface conditions. In this paper, three models of varying complexities [the Variable Infiltration Capacity (VIC), Decision Support System for Agrotechnology Transfer (DSSAT), and Climatic Water Budget (CWB) models] that are commonly used for simulating soil moisture were evaluated and compared using soil moisture data (1997–2005) from three Soil Climate Analysis Network (SCAN) sites (Bushland, Texas; Prairie View, Texas; Powder Mill, Maryland). Results demonstrated that DSSAT and VIC simulated soil moisture more accurately than CWB at the three SCAN sites. DSSAT and VIC both accurately simulated the annual cycle of soil moisture and the wetting and drying in response to weather conditions, as evidenced by the relatively strong correlations, but could not accurately simulate the actual soil water content in the upper soil layers (the mean coefficients of efficiency E for all DSSAT and VIC simulations were −0.8 and −2.6, respectively). CWB could not accurately simulate soil moisture at any of the SCAN sites. Model performance varied significantly not only from model to model but also from year to year and from location to location. Model sensitivity analysis using the factorial approach suggests that DSSAT is more sensitive than VIC and that model sensitivity varies by locations, indicating that parameter sensitivity is more strongly controlled by climatic gradients than by changes in soil properties.

Corresponding author address: Lei Meng, Department of Geography, Texas A&M University, 3147 TAMU, College Station, TX 77843. Email: leimeng@tamu.edu

Save
  • Abdulla, F. A., Lettenmaier D. P. , Wood E. F. , and Smith J. A. , 1996: Application of a macroscale hydrologic model to estimate the water balance of the Arkansas–Red River basin. J. Geophys. Res., 101 , D3. 74497459.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andreadis, K. M., Clark E. A. , Wood A. W. , Hamlet A. F. , and Lettenmaier D. P. , 2005: Twentieth-century drought in the conterminous United States. J. Hydrometeor., 6 , 9851001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barros, A. P., 1996: An evaluation of model parameterizations of sediment pathways: A case study for the Tejo estuary. Cont. Shelf Res., 16 , 17251749.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bosch, D. D., 2004: Comparison of capacitance-based soil water probes in coastal plain soils. Vadose Zone J., 3 , 13801389.

  • Box, G. E. P., Hunter W. G. , and Hunter J. S. , 1978: Statistics for Experimenters: An Introduction to Design, Data Analysis, and Model Building. Wiley, 653 pp.

    • Search Google Scholar
    • Export Citation
  • Chen, T. H., and Coauthors, 1997: Cabauw experimental results from the project for intercomparison of land-surface parameterization schemes. J. Climate, 10 , 11941215.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cherkauer, K. A., and Lettenmaier D. P. , 1999: Hydrologic effects of frozen soils in the upper Mississippi River basin. J. Geophys. Res., 104 , D16. 1959919610.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Daly, C., Neilson R. P. , and Phillips D. L. , 1994: A statistical topographic model for mapping climatological precipitation over mountainous terrain. J. Appl. Meteor., 33 , 140158.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Demaria, E. M., Nijssen B. , and Wagener T. , 2007: Monte Carlo sensitivity analysis of land surface parameters using the Variable Infiltration Capacity model. J. Geophys. Res., 112 .D11113, doi:10.1029/2006JD007534.

    • Search Google Scholar
    • Export Citation
  • Desborough, C. E., Pitman A. J. , and Irannejad P. , 1996: Analysis of the relationship between bare soil evaporation and soil moisture simulated by 13 land surface schemes for a simple non-vegetated site. Global Planet. Change, 13 , 4756.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., Guo Z. C. , and Gao X. , 2004: Comparison, validation, and transferability of eight multiyear global soil wetness products. J. Hydrometeor., 5 , 10111033.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Franchini, M., and Pacciani M. , 1991: Comparative analysis of several conceptual rainfall runoff models. J. Hydrol., 122 , 161219.

  • Gebremichael, M., and Barros A. P. , 2006: Evaluation of MODIS gross primary productivity (GPP) in tropical monsoon regions. Remote Sens. Environ., 100 , 150166.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guo, Z., and Dirmeyer P. A. , 2006: Evaluation of the Second Global Soil Wetness Project soil moisture simulations: 1. Intermodel comparison. J. Geophys. Res., 111 .D22S02, doi:10.1029/2006JD007233.

    • Search Google Scholar
    • Export Citation
  • Hansen, M. C., Defries R. S. , Townshend J. R. G. , and Sohlberg R. , 2000: Global land cover classification at 1-km spatial resolution using a classification tree approach. Int. J. Remote Sens., 21 , 13311364.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, J., van den Dool H. M. , and Georgakakos K. P. , 1996: Analysis of model-calculated soil moisture over the United States (1931–93) and applications to long-range temperature forecasts. J. Climate, 9 , 13501362.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, J. W., and Coauthors, 2003: The DSSAT cropping system model. Eur. J. Agron., 18 , 235265.

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Kanamitsu, M., Ebisuzaki W. , Woollen J. , Yang S-K. , Hnilo J. J. , Fiorino M. , and Potter G. L. , 2002: NCEP-DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83 , 16311643.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kimball, J. S., Running S. W. , and Nemani R. , 1997: An improved method for estimating surface humidity from daily minimum temperature. Agric. For. Meteor., 85 , 8798.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Milly P. C. D. , 1997: The interplay between transpiration and runoff formulations in land surface schemes used with atmospheric models. J. Climate, 10 , 15781591.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Suarez M. J. , 2001: Soil moisture memory in climate models. J. Hydrometeor., 2 , 558570.

  • Koster, R. D., and Coauthors, 2004: Regions of strong coupling between soil moisture and precipitation. Science, 305 , 11381140.

  • Larkin, T. J., and Bomar G. W. , 1983: Climatic Atlas of Texas. Texas Department of Water Resources, 151 pp.

  • Legates, D. R., and McCabe G. J. , 1999: Evaluating the use of “goodness-of-fit” measures in hydrologic and hydroclimatic model validation. Water Resour. Res., 35 , 233241.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, H. B., Robock A. , Liu S. , Mo X. , and Viterbo P. , 2005: Evaluation of reanalysis soil moisture simulations using updated Chinese soil moisture observations. J. Hydrometeor., 6 , 180193.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liang, X., Lettenmaier D. P. , Wood E. F. , and Burges S. J. , 1994: A simple hydrologically based model of land surface water and energy fluxes for general circulation models. J. Geophys. Res., 99 , D7. 1441514428.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liang, X., Lettenmaier D. P. , and Wood E. F. , 1996a: One-dimensional statistical dynamic representation of subgrid spatial variability of precipitation in the two-layer variable infiltration capacity model. J. Geophys. Res., 101 , D16. 2140321422.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liang, X., Wood E. F. , and Lettenmaier D. P. , 1996b: Surface soil moisture parameterization of the VIC-2L model: Evaluation and modification. Global Planet. Change, 13 , 195206.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liong, S. Y., Shreeram J. , and Ibrahim Y. , 1995: Catchment calibration using fractional-factorial and central-composite-designs-based response surface. J. Hydraul. Eng., 121 , 507510.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, C. H., Kanamitsu M. , Roads J. O. , Ebisuzaki W. , Mitchell K. E. , and Lohmann D. , 2005: Evaluation of soil moisture in the NCEP–NCAR and NCEP–DOE global reanalyses. J. Hydrometeor., 6 , 391408.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mather, J. R., 1978: The Climatic Water Budget in Environmental Analysis. Lexington Books, 239 pp.

  • Maurer, E. P., O’Donnell G. M. , Lettenmaier D. P. , and Roads J. O. , 2001: Evaluation of the land surface water budget in NCEP/NCAR and NCEP/DOE reanalyses using an off-line hydrologic model. J. Geophys. Res., 106 , D16. 1784117862.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maurer, E. P., Wood A. W. , Adam J. C. , Lettenmaier D. P. , and Nijssen B. , 2002: A long-term hydrologically based dataset of land surface fluxes and states for the conterminous United States. J. Climate, 15 , 32373251.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, D. A., and White R. A. , 1998: A conterminous United States multi-layer soil characteristics data set for regional climate and hydrology modeling. Earth Interactions, 2 .[Available online at http://EarthInteractions.org.].

    • Search Google Scholar
    • Export Citation
  • Mo, K. C., and Juang H-M. H. , 2003: Relationships between soil moisture and summer precipitation over the Great Plains and the Southwest. J. Geophys. Res., 108 .8610, doi:10.1029/2002JD002952.

    • Search Google Scholar
    • Export Citation
  • Nijssen, B., Lettenmaier D. P. , Liang X. , Wetzel S. W. , and Wood E. F. , 1997: Streamflow simulation for continental-scale river basins. Water Resour. Res., 33 , 711724.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Noilhan, J., and Planton S. , 1989: A simple parameterization of land surface processes for meteorological models. Mon. Wea. Rev., 117 , 536549.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oglesby, R. J., and Erickson D. J. , 1989: Soil moisture and the persistence of North American drought. J. Climate, 2 , 13621380.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Priestley, C. H. B., and Taylor R. J. , 1972: On the assessment of surface heat flux and evaporation using large-scale parameters. Mon. Wea. Rev., 100 , 8192.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Quiring, S. M., 2004: Developing a real-time agricultural drought monitoring system for Delaware. Publications in Climatology, Vol. 57, University of Delaware, 104 pp.

    • Search Google Scholar
    • Export Citation
  • Quiring, S. M., and Papakryiakou T. N. , 2003: An evaluation of agricultural drought indices for the Canadian prairies. Agric. For. Meteor., 118 , 4962.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rawls, W. J., and Brakensiek D. L. , 1985: Prediction of soil water properties for hydrologic modeling. Proc. Symp. on Watershed Management in the Eighties, Denver, CO, American Society of Civil Engineering, 293–299.

  • Ritchie, J. T., 1972: Model for predicting evaporation from a row crop with incomplete cover. Water Resour. Res., 8 , 12041213.

  • Ritchie, J. T., 1998: Soil water balance and plant stress. Understanding Options for Agricultural Production, G. Y. Tsuji, G. Hoogenboom and P. K. Thornton, Eds., Kluwer Academic, 45–58.

    • Search Google Scholar
    • Export Citation
  • Ritchie, J. T., and Otter S. , 1985: Description and performance of CERES-Wheat: A user-oriented wheat yield model. ARS Wheat Yield Project, USDA Rep. ARS-38, 159–175.

    • Search Google Scholar
    • Export Citation
  • Robock, A., Vinnikov K. Ya , Schlosser C. A. , Speranskaya N. A. , and Xue Y. , 1995: Use of midlatitude soil moisture and meteorological observations to validate soil moisture simulations with biosphere and bucket models. J. Climate, 8 , 1535.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robock, A., Schlosser C. A. , Vinnikov K. Ya , Speranskaya N. A. , Entin J. K. , and Qiu S. , 1998: Evaluation of the AMIP soil moisture simulations. Global Planet. Change, 19 , 181208.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robock, A., Vinnikov K. Ya , Srinivasan G. , Entin J. K. , Hollinger S. E. , Speranskaya N. A. , Liu S. , and Namkhai A. , 2000: The Global Soil Moisture Data Bank. Bull. Amer. Meteor. Soc., 81 , 12811299.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robock, A., and Coauthors, 2003: Evaluation of the North American Land Data Assimilation System over the southern Great Plains during the warm season. J. Geophys. Res., 108 .8846, doi:10.1029/2002JD003245.

    • Search Google Scholar
    • Export Citation
  • Sau, F., Boote K. J. , Bostick W. M. , Jones J. W. , and Minguez M. I. , 2004: Testing and improving evapotranspiration and soil water balance of the DSSAT crop models. Agron. J., 96 , 12431257.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schaake, J. C., and Coauthors, 2004: An intercomparison of soil moisture fields in the North American Land Data Assimilation System (NLDAS). J. Geophys. Res., 109 .D01S90, doi:10.1029/2002JD003309.

    • Search Google Scholar
    • Export Citation
  • Seyfried, M. S., and Murdock M. D. , 2004: Measurement of soil water content with a 50-MHz soil dielectric sensor. Soil Sci. Soc. Amer. J., 68 , 394403.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seyfried, M. S., Grant L. E. , Du E. , and Humes K. , 2005: Dielectric loss and calibration of the Hydra Probe soil water sensor. Vadose Zone J., 4 , 10701079.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheffield, J., and Coauthors, 2003: Snow process modeling in the North American Land Data Assimilation System (NLDAS): 1. Evaluation of model-simulated snow cover extent. J. Geophys. Res., 108 .8849, doi:10.1029/2002JD003274.

    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., and Gibson J. K. , 2000: The ERA-40 Project Plan. ERA-40 Project Report Series 1, 63 pp.

  • Srinivasan, G., Robock A. , Entin J. K. , Luo L. , Vinnikov K. Ya , and Viterbo P. , 2000: Soil moisture simulations in revised AMIP models. J. Geophys. Res., 105 , D21. 2663526644.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thornthwaite, C. W., 1948: An approach toward a rational classification of climate. Geogr. Rev., 38 , 5594.

  • Thornthwaite, C. W., and Mather J. R. , 1955: The water balance. Publications in Climatology, Vol. 8, University of Delaware, 104 pp.

  • Thornton, P. E., and Running S. W. , 1999: An improved algorithm for estimating incident daily solar radiation from measurements of temperature, humidity, and precipitation. Agric. For. Meteor., 93 , 211228.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walker, J., and Rowntree P. R. , 1977: Effect of soil moisture on circulation and rainfall in a tropical model. Quart. J. Roy. Meteor. Soc., 103 , 2946.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, J. R., Jones C. A. , and Dyke P. T. , 1984: A modeling approach to determining the relationship between erosion and soil productivity. Trans. ASAE, 27 , 129144.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Willmott, C. J., and Matsuura K. , 2005: Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Climate Res., 30 , 7982.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Willmott, C. J., Rowe C. M. , and Mintz Y. , 1985: Climatology of the terrestrial seasonal water cycle. J. Climatol., 5 , 589606.

  • Wood, E. F., Lettenmaier D. P. , and Zartarian V. G. , 1992: A land-surface hydrology parameterization with subgrid variability for general circulation models. J. Geophys. Res., 97 , D3. 27172728.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, E. F., Lettenmaier D. , Liang X. , Nijssen B. , and Wetzel S. W. , 1997: Hydrological modeling of continental-scale basins. Annu. Rev. Earth Planet. Sci., 25 , 279300.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, Y. K., Zeng F. J. , and Schlosser C. A. , 1996: SSiB and its sensitivity to soil properties: A case study using HAPEX-Mobilhy data. Global Planet. Change, 13 , 183194.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, Y. K., Sellers P. J. , Zeng F. J. , and Schlosser C. A. , 1997: Comments on “Use of midlatitude soil moisture and meteorological observations to validate soil moisture simulations with biosphere and bucket models”. J. Climate, 10 , 374376.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yildiz, O., and Barros A. P. , 2007: Elucidating vegetation controls on the hydroclimatology of a mid-latitude basin. J. Hydrol., 333 , 431448.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zuo, Q., Meng L. , and Zhang R. , 2004: Simulating soil water flow with root-water-uptake applying an inverse method. Soil Sci., 169 , 1324.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1321 306 19
PDF Downloads 962 203 27