The Diurnal Cycle of Clouds and Precipitation along the Sierra Madre Occidental Observed during NAME-2004: Implications for Warm Season Precipitation Estimation in Complex Terrain

Stephen W. Nesbitt Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois

Search for other papers by Stephen W. Nesbitt in
Current site
Google Scholar
PubMed
Close
,
David J. Gochis Research Applications Program, National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by David J. Gochis in
Current site
Google Scholar
PubMed
Close
, and
Timothy J. Lang Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by Timothy J. Lang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study examines the spatial and temporal variability in the diurnal cycle of clouds and precipitation tied to topography within the North American Monsoon Experiment (NAME) tier-I domain during the 2004 NAME enhanced observing period (EOP, July–August), with a focus on the implications for high-resolution precipitation estimation within the core of the monsoon. Ground-based precipitation retrievals from the NAME Event Rain Gauge Network (NERN) and Colorado State University–National Center for Atmospheric Research (CSU–NCAR) version 2 radar composites over the southern NAME tier-I domain are compared with satellite rainfall estimates from the NOAA Climate Prediction Center Morphing technique (CMORPH) and Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks (PERSIANN) operational and Tropical Rainfall Measuring Mission (TRMM) 3B42 research satellite estimates along the western slopes of the Sierra Madre Occidental (SMO). The rainfall estimates are examined alongside hourly images of high-resolution Geostationary Operational Environmental Satellite (GOES) 11-μm brightness temperatures.

An abrupt shallow to deep convective transition is found over the SMO, with the development of shallow convective systems just before noon on average over the SMO high peaks, with deep convection not developing until after 1500 local time on the SMO western slopes. This transition is shown to be contemporaneous with a relative underestimation (overestimation) of precipitation during the period of shallow (deep) convection from both IR and microwave precipitation algorithms due to changes in the depth and vigor of shallow clouds and mixed-phase cloud depths. This characteristic life cycle in cloud structure and microphysics has important implications for ice-scattering microwave and infrared precipitation estimates, and thus hydrological applications using high-resolution precipitation data, as well as the study of the dynamics of convective systems in complex terrain.

* The National Center for Atmospheric Research is sponsored by the National Science Foundation

Corresponding author address: Prof. Stephen W. Nesbitt, Dept. of Atmospheric Sciences, University of Illinois at Urbana–Champaign, 105 S. Gregory St., Urbana, IL 61801-3070. Email: snesbitt@uiuc.edu

Abstract

This study examines the spatial and temporal variability in the diurnal cycle of clouds and precipitation tied to topography within the North American Monsoon Experiment (NAME) tier-I domain during the 2004 NAME enhanced observing period (EOP, July–August), with a focus on the implications for high-resolution precipitation estimation within the core of the monsoon. Ground-based precipitation retrievals from the NAME Event Rain Gauge Network (NERN) and Colorado State University–National Center for Atmospheric Research (CSU–NCAR) version 2 radar composites over the southern NAME tier-I domain are compared with satellite rainfall estimates from the NOAA Climate Prediction Center Morphing technique (CMORPH) and Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks (PERSIANN) operational and Tropical Rainfall Measuring Mission (TRMM) 3B42 research satellite estimates along the western slopes of the Sierra Madre Occidental (SMO). The rainfall estimates are examined alongside hourly images of high-resolution Geostationary Operational Environmental Satellite (GOES) 11-μm brightness temperatures.

An abrupt shallow to deep convective transition is found over the SMO, with the development of shallow convective systems just before noon on average over the SMO high peaks, with deep convection not developing until after 1500 local time on the SMO western slopes. This transition is shown to be contemporaneous with a relative underestimation (overestimation) of precipitation during the period of shallow (deep) convection from both IR and microwave precipitation algorithms due to changes in the depth and vigor of shallow clouds and mixed-phase cloud depths. This characteristic life cycle in cloud structure and microphysics has important implications for ice-scattering microwave and infrared precipitation estimates, and thus hydrological applications using high-resolution precipitation data, as well as the study of the dynamics of convective systems in complex terrain.

* The National Center for Atmospheric Research is sponsored by the National Science Foundation

Corresponding author address: Prof. Stephen W. Nesbitt, Dept. of Atmospheric Sciences, University of Illinois at Urbana–Champaign, 105 S. Gregory St., Urbana, IL 61801-3070. Email: snesbitt@uiuc.edu

Save
  • Adams, D. K., and Comrie A. C. , 1997: The North American monsoon. Bull. Amer. Meteor. Soc., 78 , 21972213.

  • Alcantara, A. O., Luna I. , and Velaquez A. , 2002: Altitudinal distribution patterns of Mexican cloud forests based upon preferential characteristic genera. Plant Ecol., 161 , 167174.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arkin, P. A., and Meisner B. N. , 1987: The relationship between large-scale convective rainfall and cold cloud over the Western Hemisphere during 1982–84. Mon. Wea. Rev., 115 , 5174.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Banta, R. M., and Schaaf C. B. , 1987: Thunderstorm genesis zones in the Colorado Rocky Mountains as determined by traceback of geosynchronous satellite images. Mon. Wea. Rev., 115 , 463476.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berbery, E. H., 2001: Mesoscale moisture analysis of the North American monsoon. J. Climate, 14 , 121137.

  • Bordoni, S., and Stevens B. , 2006: Principal component analysis of the summertime winds over the Gulf of California. A gulf surge index. Mon. Wea. Rev., 134 , 33953414.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bordoni, S., Ciesielski P. E. , Johnson R. H. , McNoldy B. D. , and Stevens B. , 2004: The low-level circulation of the North American monsoon as revealed by QuikSCAT. Geophys. Res. Lett., 31 .L10109, doi:10.1029/2004GL020009.

    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., Tang T. W. , and Chandrasekar V. , 2004: Evaluation of a new polarimetrically based ZR relation. J. Atmos. Oceanic Technol., 21 , 612623.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brito-Castillo, L., Douglas A. V. , Leyva-Contreras A. , and Lluch-Belda D. , 2003: The effect of large-scale circulation on precipitation and streamflow in the Gulf of California watershed. Int. J. Climatol., 23 , 751768.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ciesielski, P. E., and Johnson R. H. , 2008: Diurnal cycle of surface flows during 2004 NAME and comparison to model reanalysis. J. Climate, 21 , 38903913.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Douglas, M., Maddox R. A. , Howard K. , and Reyes S. , 1993: The Mexican monsoon. J. Climate, 6 , 16551667.

  • Durre, I., and Wallace J. M. , 2001: The warm season dip in diurnal temperature range over the eastern United States. J. Climate, 14 , 354360.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Farfan, L. M., and Zehnder J. A. , 1994: Moving and stationary mesoscale convective systems over northwest Mexico during the Southwest Area Monsoon Project. Wea. Forecasting, 9 , 630639.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferraro, R. R., 1997: Special Sensor Microwave Imager derived global rainfall estimates for climatological applications. J. Geophys. Res., 102 , 1671516735.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fiorino, S. T., and Smith E. A. , 2006: Critical assessment of microphysical assumptions within TRMM radiometer rain profile algorithm using satellite, aircraft, and surface datasets from KWAJEX. J. Appl. Meteor. Climatol., 45 , 754786.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gebremichael, M., Vivoni E. , Watts C. J. , and Rodriguez J. C. , 2007: Submesoscale spatiotemporal variability of North American monsoon rainfall over complex terrain. J. Climate, 20 , 17511773.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gochis, D. J., Shuttleworth W. J. , and Yang Z-L. , 2002: Sensitivity of the modeled North American monsoon regional climate to convective parameterization. Mon. Wea. Rev., 130 , 12821298.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gochis, D. J., Leal J. C. , Shuttleworth W. J. , Watts C. J. , and Garatuza-Payan J. , 2003: Preliminary diagnostics from a new event-based precipitation monitoring system in support of the North American Monsoon Experiment. J. Hydrometeor., 4 , 974981.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gochis, D. J., Jimenez A. , Watts C. J. , Garatuza-Payan J. , and Shuttleworth W. J. , 2004: Analysis of 2002 and 2003 warm-season precipitation from the North American Monsoon Experiment Event Rain Gauge Network. Mon. Wea. Rev., 132 , 29382953.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gochis, D. J., Brito-Castillo L. , and Shuttleworth W. J. , 2006: Hydroclimatology of the North American monsoon region in northwest Mexico. J. Hydrol., 316 , 5370.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gochis, D. J., Watts C. J. , Garatuza-Payan J. , and Rodriguez J. C. , 2007: Spatial and temporal patterns of precipitation intensity as observed by the NAME Event Rain Gauge Network from 2002 to 2004. J. Climate, 20 , 17341750.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gutzler, D. S., and Coauthors, 2005: The North American Monsoon Model Assessment Project: Integrating numerical modeling into a field-based process study. Bull. Amer. Meteor. Soc., 86 , 14231429.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harris, D., Foufoula-Georgiou E. , and Kummerow C. , 2003: Effects of underrepresented hydrometeor variability and partial beam filling on microwave brightness temperatures for rainfall retrieval. J. Geophys. Res., 108 .8380, doi:10.1029/2001JD001144.

    • Search Google Scholar
    • Export Citation
  • Higgins, W., and Coauthors, 2006: The NAME 2004 field campaign and modeling strategy. Bull. Amer. Meteor. Soc., 87 , 7994.

  • Hong, Y., Hsu K. , Sorooshian S. , and Gao X. , 2004: Precipitation estimation from remotely sensed imagery using an artificial neural network cloud classification system. J. Appl. Meteor., 43 , 18341853.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, Y., Hsu K. L. , Sorooshian S. , and Gao X. G. , 2005: Improved representation of diurnal variability of rainfall retrieved from the Tropical Rainfall Measurement Mission Microwave Imager adjusted Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks (PERSIANN) system. J. Geophys. Res., 110 .D06102, doi:10.1029/2004JD005301.

    • Search Google Scholar
    • Export Citation
  • Hong, Y., Gochis D. J. , Cheng Y. , Hsu K-L. , and Sorooshian S. , 2007: Evaluation of PERSIANN-CCS rainfall measurement using the NAME Event Rain Gauge Network. J. Hydrometeor., 8 , 469482.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsu, K. L., Gao X. G. , Sorooshian S. , and Gupta H. V. , 1997: Precipitation estimation from remotely sensed information using artificial neural networks. J. Appl. Meteor., 36 , 11761190.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., Adler R. F. , Morrissey M. M. , Bolvin D. T. , Curtis S. , Joyce R. , McGavock B. , and Susskind J. , 2001: Global precipitation at one-degree daily resolution from multisatellite observations. J. Hydrometeor., 2 , 3650.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multi-satellite Precipitation Analysis: Quasi-global, multi-year, combined-sensor precipitation estimates at fine scale. J. Hydrometeor., 8 , 3855.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janowiak, J. E., Joyce R. J. , and Yarosh Y. , 2001: A real-time global half-hourly pixel-resolution infrared dataset and its applications. Bull. Amer. Meteor. Soc., 82 , 205217.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janowiak, J. E., Kousky V. E. , and Joyce R. J. , 2005: Diurnal cycle of precipitation determined from the CMORPH high spatial and temporal resolution global precipitation analyses. J. Geophys. Res., 110 .D23105, doi:10.1029/2005JD006156.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., Ciesielski P. E. , McNoldy B. D. , Rogers P. J. , and Taft R. K. , 2007: Multiscale variability of the flow during the North American Monsoon Experiment. J. Climate, 20 , 16281648.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joyce, R. J., Janowiak J. E. , Arkin P. A. , and Xie P. P. , 2004: CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeor., 5 , 487503.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kummerow, C., 1998: Beamfilling errors in passive microwave rainfall retrievals. J. Appl. Meteor., 37 , 356370.

  • Kummerow, C., and Coauthors, 2001: The evolution of the Goddard Profiling Algorithm (GPROF) for rainfall estimation from passive microwave sensors. J. Appl. Meteor., 40 , 18011820.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lang, T. J., Ahijevych D. A. , Nesbitt S. W. , Carbone R. E. , Rutledge S. A. , and Cifelli R. , 2007: Radar-observed characteristics of precipitating systems during NAME 2004. J. Climate, 20 , 17131733.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, C., Zipser E. J. , and Nesbitt S. W. , 2007: Global distribution of tropical deep convection: Different perspectives from TRMM infrared and radar data. J. Climate, 20 , 489503.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCollum, J. R., Krajewski W. F. , Ferraro R. R. , and Ba M. B. , 2002: Evaluation of biases of satellite rainfall estimation algorithms over the continental United States. J. Appl. Meteor., 41 , 10651080.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mesinger, F., and Coauthors, 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87 , 343360.

  • Negri, A., Adler R. F. , Nelkin E. J. , and Huffman G. J. , 1994: Regional rainfall climatologies derived from Special Sensor Microwave Imager (SSM/I) data. Bull. Amer. Meteor. Soc., 75 , 11651182.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nesbitt, S. W., and Zipser E. J. , 2003: The diurnal cycle of rainfall and convective intensity according to three years of TRMM measurements. J. Climate, 16 , 14561475.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nesbitt, S. W., Zipser E. J. , and Kummerow C. D. , 2004: An examination of version-5 rainfall estimates from the TRMM Microwave Imager, Precipitation Radar, and rain gauges on global, regional, and storm scales. J. Appl. Meteor., 43 , 10161036.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., and Ulbrich C. W. , 2003: Cloud microphysical properties, processes, and rainfall estimation opportunities. Radar and Atmospheric Science: A Collection of Essays in Honor of David Atlas, Meteor. Monogr., No. 52, Amer. Meteor. Soc., 237–258.

    • Search Google Scholar
    • Export Citation
  • Rowe, A. K., Rutledge S. A. , Lang T. J. , Ciesielski P. E. , and Saleeby S. M. , 2008: Elevation-dependent trends in precipitation during NAME. Mon. Wea. Rev., in press.

    • Search Google Scholar
    • Export Citation
  • Saleeby, S. M., and Cotton W. R. , 2004: Simulations of the North American Monsoon System. Part I: Model analysis of the 1993 monsoon season. J. Climate, 17 , 19972018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, J. A., and Krajewski W. F. , 1991: Estimation of the mean field bias of radar estimates. J. Appl. Meteor., 30 , 397412.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sorooshian, S., Hsu K. L. , Gao X. , Gupta H. V. , Imam B. , and Braithwaite D. , 2000: Evaluation of PERSIANN system satellite-based estimates of tropical rainfall. Bull. Amer. Meteor. Soc., 81 , 20352046.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steiner, M., and Smith J. A. , 2004: Scale dependence of radar-rainfall rates—An assessment based on raindrop spectra. J. Hydrometeor., 5 , 11711180.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., Gall R. L. , and Nordquist M. K. , 1997: Surges over the Gulf of California during the Mexican monsoon. Mon. Wea. Rev., 125 , 417437.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 1995: Meteorology Today: For Scientists and Engineers. West Publishing 88 pp.

  • Tripoli, G. J., and Cotton W. R. , 1989a: Numerical study of an observed orogenic mesoscale convective system. Part I: Simulated genesis and comparison with observations. Mon. Wea. Rev., 117 , 273304.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tripoli, G. J., and Cotton W. R. , 1989b: Numerical study of an observed orogenic mesoscale convective system. Part II: Analysis of governing dynamics. Mon. Wea. Rev., 117 , 305328.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tustison, B., Harris D. , and Foufoula-Georgiou E. , 2001: Scale issues in verification of precipitation forecasts. J. Geophys. Res., 106 , 1177511784.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tustison, B., Foufoula-Georgiou D. E. , and Harris D. , 2003: Scale-recursive estimation for multisensor quantitative precipitation forecast verification: A preliminary assessment. J. Geophys. Res., 107 .8377, doi:10.1029/2001JD001073.

    • Search Google Scholar
    • Export Citation
  • Vivoni, E. R., and Coauthors, 2007: Variation of hydrometeorogical conditions along a topographics transect in northwestern Mexico during the North American mosoon. J. Climate, 20 , 17921809.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whiteman, C. D., 2000: Mountain Meteorology: Fundamentals and Applications. Oxford University Press, 355 pp.

  • Xie, P. P., and Arkin P. A. , 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78 , 25392558.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, P., Yarosh Y. , Chen M. , Joyce R. , Janowiak J. J. , and Arkin P. A. , 2005: Diurnal cycle of cloud and precipitation associated with the North America monsoon system: Preliminary results for 2003 and 2004. Preprints, 16th Conf. on Climate Variability and Change, San Diego, CA, Amer. Meteor. Soc., 4.22. [Available online at http://ams.confex.com/ams/pdfpapers/82939.pdf.].

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 462 174 14
PDF Downloads 276 95 4