An Automated Radar Technique for the Identification of Tropical Precipitation

Xiaoyong Xu Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, Norman, Oklahoma

Search for other papers by Xiaoyong Xu in
Current site
Google Scholar
PubMed
Close
,
Kenneth Howard NOAA/OAR National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Kenneth Howard in
Current site
Google Scholar
PubMed
Close
, and
Jian Zhang Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, Norman, Oklahoma

Search for other papers by Jian Zhang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A radar-based automated technique for the identification of tropical precipitation was developed to improve quantitative precipitation estimation during extreme rainfall events. The technique uses vertical profiles of reflectivity to identify the potential presence of warm rain (i.e., tropical rainfall) microphysics and delineates the tropical rainfall region to which the tropical ZR relationship is applied. The performance of the algorithm is examined based on case studies of five storms that produced extreme precipitation in the United States. Results demonstrate relative improvements in radar-based quantitative precipitation estimation through the automated identification of tropical rainfall and the subsequent adaptation of the tropical ZR relation to account for the potential warm rain processes.

Corresponding author address: Xiaoyong Xu, NSSL/WRDD, 120 David L. Boren Blvd., Norman, OK 73072. Email: E-mail xiaoyong.xu@noaa.gov

Abstract

A radar-based automated technique for the identification of tropical precipitation was developed to improve quantitative precipitation estimation during extreme rainfall events. The technique uses vertical profiles of reflectivity to identify the potential presence of warm rain (i.e., tropical rainfall) microphysics and delineates the tropical rainfall region to which the tropical ZR relationship is applied. The performance of the algorithm is examined based on case studies of five storms that produced extreme precipitation in the United States. Results demonstrate relative improvements in radar-based quantitative precipitation estimation through the automated identification of tropical rainfall and the subsequent adaptation of the tropical ZR relation to account for the potential warm rain processes.

Corresponding author address: Xiaoyong Xu, NSSL/WRDD, 120 David L. Boren Blvd., Norman, OK 73072. Email: E-mail xiaoyong.xu@noaa.gov

Save
  • Aiken, R., 2000: Performance of WSR-88D during Hurricanes Fran and Floyd rainfall measurements Presentation on 2000 TAC Report. NOAA/National Weather Service/Radar Operations Center, Wilmington, NC. [Available online at http://www.roc.noaa.gov/app/tac/past_mtgs/May_2000_Report.asp.].

  • Anagnostou, E. N., and Krajewski W. F. , 1998: Calibration of the WSR-88D precipitation processing subsystem. Wea. Forecasting, 13 , 396406.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anagnostou, E. N., and Krajewski W. F. , 1999: Real-time radar rainfall estimation. Part II: Case study. J. Atmos. Oceanic Technol., 16 , 198205.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Austin, P., 1987: Relation between measured radar reflectivity and surface rainfall. Mon. Wea. Rev., 115 , 10531070.

  • Austin, P. M., Geotis S. G. , Cunning J. B. , Thomas J. L. , Sax R. I. , and Gillespie J. R. , 1976: Raindrop size distributions and Z-R relationsip for GATE. Preprints, 10th Conf. on Hurricanes and Tropical Meteorology, Charlottesville, VA, Amer. Meteor. Soc., 165–166.

  • Baeck, M., and Smith J. , 1998: Rainfall estimation by the WSR-88D for heavy rainfall events. Wea. Forecasting, 13 , 416436.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benjamin, S. G., and Coauthors, 2004: An hourly assimilation–forecast cycle: The RUC. Mon. Wea. Rev., 132 , 495518.

  • Fulton, R., Breidenbach J. , Seo D-J. , Miller D. , and O’Bannon T. , 1998: The WSR-88D rainfall algorithm. Wea. Forecasting, 13 , 377395.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Germann, U., and Joss J. , 2002: Mesobeta profiles to extrapolate radar precipitation measurements above the Alps to the ground level. J. Appl. Meteor., 41 , 542557.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze R. A. Jr., , 1989: Observed structure of mesoscale convective systems and implications for large-scale heating. Quart. J. Roy. Meteor. Soc., 115 , 425461.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze R. A. Jr., , 1993: Cloud Dynamics. Academic Press, 573 pp.

  • Hudlow, M., 1979: Mean rainfall patterns for the three phases of GATE. J. Appl. Meteor., 18 , 16561669.

  • Hunter, S. M., 1996: WSR-88D radar rainfall estimation Capabilities, limitations and potential improvements. Natl. Wea. Dig., 20 , 4. 2638.

    • Search Google Scholar
    • Export Citation
  • Joss, J., and Waldvogel A. , 1990: Precipitation measurement and hydrology. Radar in Meteorology Battan Memorial and 40th Anniversary Radar Meteorology Conference, D. Atlas, Ed., Amer. Meteor. Soc., 577–606.

    • Crossref
    • Export Citation
  • Klazura, G. E., Thomale J. M. , Kelly D. S. , and Jendrowski P. , 1999: A comparison of NEXRAD WSR-88D radar estimates of rain accumulation with gauge measurements for high- and low-reflectivity horizontal gradient precipitation events. J. Atmos. Oceanic Technol., 16 , 18421850.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kucera, P. A., Short D. A. , and Thiele O. W. , 1996: An analysis of rainfall intensity and vertical structure from shipborne radars TOGA COARE. Preprints, Seventh Conf. on Mesoscale Processes, Reading, United Kingdom, Amer. Meteor. Soc., 131–134.

  • Marshall, J. S., and Palmer W. Mc K. , 1948: The distribution of raindrops with size. J. Meteor., 5 , 165166.

  • Ryzhkov, A. V., and Zrnić D. S. , 1996: Rain in shallow and deep convection measured with a polarimetric radar. J. Atmos. Sci., 53 , 29892995.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., Schuur T. J. , Burgess D. W. , Heinselman P. L. , Giangrande S. E. , and Zrnić D. S. , 2005: The Joint Polarization Experiment. Bull. Amer. Meteor. Soc., 86 , 809824.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steiner, M., Houze R. A. Jr., and Yuter S. E. , 1995: Climatological characterization of three-dimensional storm structure from operational radar and rain gauge data. J. Appl. Meteor., 34 , 19782007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tokay, A., and Short D. A. , 1996: Evidence from tropical raindrop spectra of the origin of rain from stratiform versus convective clouds. J. Appl. Meteor., 35 , 355371.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uijlenhoet, R., Steiner M. , and Smith J. A. , 2003: Variability of raindrop size distribution in a squall line and implications for radar rainfall estimation. J. Hydormeteor., 44 , 4361.

    • Search Google Scholar
    • Export Citation
  • Ulbrich, C. W., and Lee L. G. , 1999: Rainfall measurement error by WSR-88D radars due to variation in ZR law parameters and the radar constant. J. Atmos. Oceanic Technol., 16 , 10171024.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vieux, B., and Bedient P. , 1998: Estimation of rainfall for flood prediction from WSR-88D reflectivity: A case study, 17–18 October 1994. Wea. Forecasting, 13 , 407415.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vignal, B., Galli G. , Joss J. , and Germann U. , 2000: Three methods to determine profiles of reflectivity from volumetric radar data to correct precipitation estimates. J. Appl. Meteor., 39 , 17151726.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, J. W., and Brandes E. A. , 1979: Radar measurement of rainfall: A summary. Bull. Amer. Meteor. Soc., 60 , 10481058.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, L. T., 1997: Using the tropical Z-R relationship to improve precipitation estimates during a heavy rain event in southeast Texas. Preprints, 28th Conf. on Radar Meteorology, Austin, TX, Amer. Meteor. Soc., 208–209.

  • Zawadzki, I., 1984: Factors affecting the precision of radar measurements of rain. Preprints, 22nd Int. Conf. on Radar Meteorology, Zurich, Switzerland, Amer. Meteor. Soc., 251–256.

  • Zhang, J., Langston C. , and Howard K. , 2008: Brightband identification based on vertical profiles of reflectivity from WSR-88D. J. Atmos. Oceanic Technol., 25 , 18591872.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., and Lutz K. R. , 1994: The vertical profile of radar reflectivity of convective cells: A strong indicator of storm intensity and lightning probability? Mon. Wea. Rev., 122 , 17511759.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 332 135 26
PDF Downloads 191 61 9