A Precipitation Climatology and Dataset Intercomparison for the Western United States

Kristen J. Guirguis Department of Civil and Environmental Engineering, Duke University, Durham, North Carolina

Search for other papers by Kristen J. Guirguis in
Current site
Google Scholar
PubMed
Close
and
Roni Avissar Department of Civil and Environmental Engineering, Duke University, Durham, North Carolina

Search for other papers by Roni Avissar in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This paper presents the results of a regionalization study of the precipitation climate of the western United States using principal component analysis. Past eigen-based regionalization studies have relied on rain gauge networks, which is restrictive because rain gauge coverage is sparse, especially over complex terrain that exists in the western United States. Here, the use of alternate data products is examined by conducting a comparative regionalization using nine precipitation datasets used in hydrometeorological research. Five unique precipitation climates are identified within the western United States, which have centers and boundaries that are physically reasonable and that highlight the relationship between the precipitation climatology and local topography. Using the congruence coefficient as the measure of similarity between principal component solutions, the method is found to be generally stable across datasets. The exception is the National Centers for Environmental Prediction–Department of Energy (NCEP–DOE) Reanalysis 2, which frequently demonstrates only borderline agreement with the other datasets. The loading pattern differences among datasets are shown to be primarily a result of data differences in the representation of (i) precipitation over the Rocky Mountains, (ii) the eastward wet-to-dry precipitation gradient that occurs during the cold season, (iii) the magnitude and spatial extent of the North American monsoon signal, and (iv) precipitation in the desert southwest during spring and summer. Sensitivity tests were conducted to determine whether the spatial resolution and temporal domain of the input data would dramatically affect the solution, and these results show the methodology to be stable to differences in spatial/temporal data features. The results suggest that alternate data products can be used in regionalization studies, which has applications for rain gauge installation and planning, climate research, and numerical modeling experiments.

Corresponding author address: Roni Avissar, Department of Civil and Environmental Engineering, Edmund T. Pratt School of Engineering, Duke University, P.O. Box 90287, Durham, NC 27708-0287. Email: avissar@duke.edu

Abstract

This paper presents the results of a regionalization study of the precipitation climate of the western United States using principal component analysis. Past eigen-based regionalization studies have relied on rain gauge networks, which is restrictive because rain gauge coverage is sparse, especially over complex terrain that exists in the western United States. Here, the use of alternate data products is examined by conducting a comparative regionalization using nine precipitation datasets used in hydrometeorological research. Five unique precipitation climates are identified within the western United States, which have centers and boundaries that are physically reasonable and that highlight the relationship between the precipitation climatology and local topography. Using the congruence coefficient as the measure of similarity between principal component solutions, the method is found to be generally stable across datasets. The exception is the National Centers for Environmental Prediction–Department of Energy (NCEP–DOE) Reanalysis 2, which frequently demonstrates only borderline agreement with the other datasets. The loading pattern differences among datasets are shown to be primarily a result of data differences in the representation of (i) precipitation over the Rocky Mountains, (ii) the eastward wet-to-dry precipitation gradient that occurs during the cold season, (iii) the magnitude and spatial extent of the North American monsoon signal, and (iv) precipitation in the desert southwest during spring and summer. Sensitivity tests were conducted to determine whether the spatial resolution and temporal domain of the input data would dramatically affect the solution, and these results show the methodology to be stable to differences in spatial/temporal data features. The results suggest that alternate data products can be used in regionalization studies, which has applications for rain gauge installation and planning, climate research, and numerical modeling experiments.

Corresponding author address: Roni Avissar, Department of Civil and Environmental Engineering, Edmund T. Pratt School of Engineering, Duke University, P.O. Box 90287, Durham, NC 27708-0287. Email: avissar@duke.edu

Save
  • Adam, J. C., and Lettenmaier D. P. , 2003: Adjustment of global gridded precipitation for systematic bias. J. Geophys. Res., 108 .4257, doi:10.1029/2002JD002499.

    • Search Google Scholar
    • Export Citation
  • Adler, R. F., Negri A. J. , Keehn P. R. , and Hakkarinen I. M. , 1993: Estimation of monthly rainfall over Japan and surrounding waters from a combination of low-orbit microwave and geosynchronous IR data. J. Appl. Meteor., 32 , 335356.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adler, R. F., Kidd C. , Petty G. , Morissey M. , and Goodman H. M. , 2001: Intercomparison of global precipitation products: The third Precipitation Intercomparison Project (PIP–3). Bull. Amer. Meteor. Soc., 82 , 13771396.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adler, R. F., and Coauthors, 2003: The version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4 , 11471167.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arkin, P. A., and Meisner B. N. , 1987: The relationship between large-scale convective rainfall and cold cloud over the Western Hemisphere during 1982–84. Mon. Wea. Rev., 115 , 5174.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arkin, P. A., and Xie P. , 1994: The Global Precipitation Climatology Project: First algorithm intercomparison project. Bull. Amer. Meteor. Soc., 75 , 401419.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beaudoin, P., and Rousselle J. , 1982: A study of space variations of precipitation by factor analysis. J. Hydrol., 59 , 123138.

  • Bretherton, C. S., Widmann M. , Dymnikov V. P. , Wallace J. M. , and Bladé I. , 1999: The effective number of spatial degrees of freedom of a time-varying field. J. Climate, 12 , 19902009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buell, C. E., 1979: On the physical interpretation of empirical orthogonal functions. Preprints, Sixth Conf. on Probability and Statistics in the Atmospheric Sciences, Baniff, AB, Canada, Amer. Meteor. Soc., 112–117.

  • Carter, M. M., and Elsner J. B. , 1997: A statistical method for forecasting rainfall over Puerto Rico. Wea. Forecasting, 12 , 515525.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cattell, R. B., 1966: The screen test for the number of factors. Multivariate Behav. Res., 1 , 245276.

  • Chen, M., Xie P. , Janowiak J. E. , and Arkin P. A. , 2002: Global land precipitation: A 50-yr monthly analysis based on gauge observations. J. Hydrometeor., 3 , 249266.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Comrie, A. C., and Glenn E. C. , 1998: Principal components-based regionalization of precipitation regimes across the southwest United States and northern Mexico, with an application to monsoon precipitation variability. Climate Res., 10 , 201215.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cressman, G. P., 1959: An operational objective analysis system. Mon. Wea. Rev., 87 , 367374.

  • Daly, C., Neilson R. P. , and Phillips D. L. , 1994: A statistical-topographic model for mapping climatological precipitation over mountainous terrain. J. Appl. Meteor., 33 , 140158.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diem, J. E., 2006: Synoptic-scale controls of summer precipitation in the southeastern United States. J. Climate, 19 , 613621.

  • Diem, J. E., and Brown D. P. , 2006: Tropospheric moisture and monsoonal rainfall over the southwestern United States. J. Geophys. Res., 111 .D16112, doi:10.1029/2005JD006836.

    • Search Google Scholar
    • Export Citation
  • Dinpashoh, Y., Fakheri-Fard A. , Moghaddam M. , Jahanbakhsh S. , and Mirnia M. , 2004: Selection of variables for the purpose of regionalization of Iran’s precipitation climate using multivariate methods. J. Hydrol., 297 , 109123.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Easterling, D. R., 1990: Persistent patterns of thunderstorm activity in the central United States. J. Climate, 3 , 13801389.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ehrendorfer, M., 1987: A regionalization of Austria’s precipitation climate using principal component analysis. Int. J. Climatol., 7 , 7189.

  • Ellis, A. W., and Hawkins T. W. , 2001: An apparent atmospheric teleconnection between snow cover and the North American monsoon. Geophys. Res. Lett., 28 , 26532656.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fuchs, T., Schneider U. , and Rudolf B. , 2007: Global precipitation analysis products of the GPCC. Global Precipitation Climatology Centre, Deutscher Wetterdienst, 12 pp.

  • Gochis, D. J., Brito-Castillo L. , and Shuttleworth W. J. , 2006: Hydroclimatology of the North American Monsoon region in northwest Mexico. J. Hydrol., 316 , 5370.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gruber, A., Su X. , Kanamitsu M. , and Schemm J. , 2000: The comparison of two merged rain gauge–satellite precipitation datasets. Bull. Amer. Meteor. Soc., 81 , 26312644.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guirguis, K. J., and Avissar R. , 2008: An analysis of precipitation variability, persistence, and observational data uncertainty in the western United States. J. Hydrometeor., 9 , 843865.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gutzler, D. S., 2004: An index of interannual precipitation variability in the core of the North American monsoon region. J. Climate, 17 , 44734480.

  • Harman, H. H., 1976: Modern Factor Analysis. 3rd ed. The University of Chicago Press, 487 pp.

  • Hawkins, T. W., Ellis A. W. , Skindlov J. A. , and Reigle D. , 2002: Intra-annual analysis of the North American snow cover–monsoon teleconnection: Seasonal forecasting utility. J. Climate, 15 , 17431753.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., Janowiak J. E. , and Yao Y-P. , 1996: A gridded hourly precipitation data base for the United States (1963–1993). NCEP/Climate Prediction Center Atlas 1, National Weather Service, NOAA, U.S. Department of Commerce, 47 pp.

    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., Shi W. , Yarosh E. , and Joyce R. , 2000: Improved United States precipitation quality control system and analysis. NCEP/Climate Prediction Center Atlas 7, National Weather Service, NOAA, U.S. Department of Commerce, 40 pp.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 1997: The Global Precipitation Climatology Project (GPCP) combined precipitation dataset. Bull. Amer. Meteor. Soc., 78 , 520.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jolliffe, I. T., 2002: Principal Component Analysis. Springer-Verlag, 487 pp.

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Kanamitsu, M., Ebisuzaki W. , Woollen J. , Yang S. K. , Hnilo J. J. , Fiorino M. , and Potter G. L. , 2002: NCEP–DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83 , 16311643.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kistler, R., and Coauthors, 2001: The NCEP–NCAR 50–Year Reanalysis: Monthly means CD-ROM and documentation. Bull. Amer. Meteor. Soc., 82 , 247267.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klazura, G. E., Thomale J. M. , Kelly D. S. , and Jendrowski P. , 1999: A comparison of NEXRAD WSR-88D radar estimates of rain accumulation with gauge measurements for high- and low-reflectivity horizontal gradient precipitation events. J. Atmos. Oceanic Technol., 16 , 18421850.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korth, B., and Tucker L. R. , 1975: The distribution of chance congruence coefficients from simulated data. Psychometrika, 40 , 361372.

  • Legates, D. R., and Willmott C. J. , 1990: Mean seasonal and spatial variability in gauge-corrected, global precipitation. Int. J. Climatol., 10 , 111127.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maddox, R. A., Zhang J. , Gourley J. J. , and Howard K. W. , 2002: Weather radar coverage over the contiguous United States. Wea. Forecasting, 17 , 927934.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maurer, E. P., Wood A. W. , Adam J. C. , Lettenmaier D. P. , and Nijssen B. , 2002: A long-term hydrologically based dataset of land surface fluxes and states for the conterminous United States. J. Climate, 15 , 32373251.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mesinger, F., and Coauthors, 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87 , 343360.

  • Mock, C. J., 1996: Climatic controls and spatial variations of precipitation in the western United States. J. Climate, 9 , 11111125.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • North, G. R., Bell T. L. , Cahalan R. F. , and Moeng F. J. , 1982: Sampling errors in the estimation of empirical orthogonal functions. Mon. Wea. Rev., 110 , 699706.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., 1988: A real-time global sea surface temperature analysis. J. Climate, 1 , 7587.

  • Richman, M. B., 1986: Rotation of principal components. Int. J. Climatol., 6 , 293335.

  • Richman, M. B., and Lamb P. J. , 1985: Climatic pattern analysis of three- and seven-day summer rainfall in the central United States: Some methodological considerations and a regionalization. J. Climate Appl. Meteor., 24 , 13251343.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richman, M. B., and Lamb P. J. , 1987: Pattern analysis of growing season precipitation in southern Canada. Atmos.–Ocean, 25 , 137158.

  • Rudolf, B., and Schneider U. , 2005: Calculation of gridded precipitation data for the global land-surface using in-situ gauge observations. Proc. Second Workshop of the International Precipitation Working Group IPWG, Monterey, CA, EUMETSAT, 231–247.

  • Rudolf, B., Hauschild H. , Rueth W. , and Schneider U. , 1994: Terrestrial precipitation analysis: Operational method and required density of point measurements. Global Precipitations and Climate Change, M. Desbois and F. Desalmond, Eds., NATO ASI Series 1, Vol. 26, Springer-Verlag, 173–186.

    • Search Google Scholar
    • Export Citation
  • Serafin, R. J., and Wilson J. W. , 2000: Operational weather radar in the United States: Progress and opportunity. Bull. Amer. Meteor. Soc., 81 , 501518.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheffield, J., Ziegler A. D. , Wood E. F. , and Chen Y. , 2004: Correction of the high-latitude rain day anomaly in the NCEP–NCAR reanalysis for land surface hydrological modeling. J. Climate, 17 , 38143828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheffield, J., Goteti G. , and Wood E. F. , 2006: Development of a 50-year high-resolution global dataset of meteorological forcings for land surface modeling. J. Climate, 19 , 30883111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shepard, D. S., 1984: Computer mapping: The SYMAP interpolation algorithm. Spatial Statistics and Models, G. L. Gaile and C. J. Willmott, Eds., D. Reidel, 133–145.

    • Search Google Scholar
    • Export Citation
  • Trewartha, G. T., 1981: The Earth’s Problem Climates. 2nd ed. University of Wisconsin Press, 371 pp.

  • White, D. R., Richman M. , and Yarnal B. , 1991: Climate regionalization and rotation of principal components. Int. J. Climatol., 11 , 125.

    • Search Google Scholar
    • Export Citation
  • Widmann, M., and Bretherton C. S. , 2000: Validation of mesoscale precipitation in the NCEP reanalysis using a new gridcell dataset for the northwestern United States. J. Climate, 13 , 19361950.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2006: Statistical Methods in the Atmospheric Sciences. Academic Press, 648 pp.

  • Xie, P., and Arkin P. A. , 1996: Analyses of global monthly precipitation using gauge observations, satellite estimates, and numerical model predictions. J. Climate, 9 , 840858.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, P., and Arkin P. A. , 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78 , 25392558.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, P., and Arkin P. A. , 1998: Global monthly precipitation estimates from satellite-observed outgoing longwave radiation. J. Climate, 11 , 137164.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yin, X., Gruber A. , and Arkin P. , 2004: Comparison of the GPCP and CMAP merged gauge–satellite monthly precipitation products for the period 1979–2001. J. Hydrometeor., 5 , 12071222.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 244 86 10
PDF Downloads 164 61 5