Mesocell Study Area Snow Distributions for the Cold Land Processes Experiment (CLPX)

Glen E. Liston Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, Colorado

Search for other papers by Glen E. Liston in
Current site
Google Scholar
PubMed
Close
,
Christopher A. Hiemstra Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, Colorado

Search for other papers by Christopher A. Hiemstra in
Current site
Google Scholar
PubMed
Close
,
Kelly Elder Rocky Mountain Research Station, USDA Forest Service, Fort Collins, Colorado

Search for other papers by Kelly Elder in
Current site
Google Scholar
PubMed
Close
, and
Donald W. Cline NOAA/National Operational Hydrologic Remote Sensing Center, Chanhassen, Minnesota

Search for other papers by Donald W. Cline in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Cold Land Processes Experiment (CLPX) had a goal of describing snow-related features over a wide range of spatial and temporal scales. This required linking disparate snow tools and datasets into one coherent, integrated package. Simulating realistic high-resolution snow distributions and features requires a snow-evolution modeling system (SnowModel) that can distribute meteorological forcings, simulate snowpack accumulation and ablation processes, and assimilate snow-related observations. A SnowModel was developed and used to simulate winter snow accumulation across three 30 km × 30 km domains, enveloping the CLPX mesocell study areas (MSAs) in Colorado. The three MSAs have distinct topography, vegetation, meteorological, and snow characteristics. Simulations were performed using a 30-m grid increment and spanned the snow accumulation season (1 October 2002–1 April 2003). Meteorological forcing was provided by 27 meteorological stations and 75 atmospheric analyses grid points, distributed using a meteorological model (MicroMet). The simulations included a data assimilation model (SnowAssim) that adjusted simulated snow water equivalent (SWE) toward ground-based and airborne SWE observations. The observations consisted of SWE over three 1 km × 1 km intensive study areas (ISAs) for each MSA and a collection of 117 airborne gamma observations, each integrating area 10 km long by 300 m wide. Simulated SWE distributions displayed considerably more spatial heterogeneity than the observations alone, and the simulated distribution patterns closely fit the current understanding of snow evolution processes and observed snow depths. This is the result of the MicroMet/SnowModel’s relatively finescale representations of orographic precipitation, elevation-dependant snowmelt, wind redistribution, and snow–vegetation interactions.

Corresponding author address: Dr. Glen E. Liston, Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, CO 80523-1375. Email: liston@cira.colostate.edu

This article included in the The Cold Land Processes Experiment (CLPX) special collection.

Abstract

The Cold Land Processes Experiment (CLPX) had a goal of describing snow-related features over a wide range of spatial and temporal scales. This required linking disparate snow tools and datasets into one coherent, integrated package. Simulating realistic high-resolution snow distributions and features requires a snow-evolution modeling system (SnowModel) that can distribute meteorological forcings, simulate snowpack accumulation and ablation processes, and assimilate snow-related observations. A SnowModel was developed and used to simulate winter snow accumulation across three 30 km × 30 km domains, enveloping the CLPX mesocell study areas (MSAs) in Colorado. The three MSAs have distinct topography, vegetation, meteorological, and snow characteristics. Simulations were performed using a 30-m grid increment and spanned the snow accumulation season (1 October 2002–1 April 2003). Meteorological forcing was provided by 27 meteorological stations and 75 atmospheric analyses grid points, distributed using a meteorological model (MicroMet). The simulations included a data assimilation model (SnowAssim) that adjusted simulated snow water equivalent (SWE) toward ground-based and airborne SWE observations. The observations consisted of SWE over three 1 km × 1 km intensive study areas (ISAs) for each MSA and a collection of 117 airborne gamma observations, each integrating area 10 km long by 300 m wide. Simulated SWE distributions displayed considerably more spatial heterogeneity than the observations alone, and the simulated distribution patterns closely fit the current understanding of snow evolution processes and observed snow depths. This is the result of the MicroMet/SnowModel’s relatively finescale representations of orographic precipitation, elevation-dependant snowmelt, wind redistribution, and snow–vegetation interactions.

Corresponding author address: Dr. Glen E. Liston, Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, CO 80523-1375. Email: liston@cira.colostate.edu

This article included in the The Cold Land Processes Experiment (CLPX) special collection.

Save
  • Albers, S. C., 1995: The LAPS wind analysis. Wea. Forecasting, 10 , 342352.

  • Albers, S. C., McGinley J. A. , Birkenheuer D. L. , and Smart J. R. , 1996: The Local Analysis and Prediction System (LAPS): Analyses of clouds, precipitation, and temperature. Wea. Forecasting, 11 , 273287.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Balk, B., and Elder K. , 2000: Combining binary decision tree and geostatistical methods to estimate snow distribution in a mountain watershed. Water Resour. Res., 36 , 1326.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnes, S. L., 1964: A technique for maximizing details in numerical weather map analysis. J. Appl. Meteor., 3 , 396409.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnes, S. L., 1973: Mesoscale objective analysis using weighted time-series observations. NOAA Tech. Memo. ERL NSSL-62, National Severe Storms Laboratory, Norman, OK 73069, 60 pp. [NTIS COM-73-10781].

  • Benedict, J. B., 1993: Influence of snow upon rates of granodiorite weathering, Colorado Front Range, USA. Boreas, 22 , 8792.

  • Billings, W. D., 1973: Arctic and alpine vegetations: Similarities, differences, and susceptibility to disturbance. BioScience, 23 , 697704.

  • Billings, W. D., and Bliss L. C. , 1959: An alpine snowbank environment and its effects on vegetation, plant development, and productivity. Ecology, 40 , 388397.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Birkenheuer, D., 1999: The effect of using digital satellite imagery in the LAPS moisture analysis. Wea. Forecasting, 14 , 782788.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blöschl, G., 1999: Scaling issues in snow hydrology. Hydrol. Processes, 13 , 21492175.

  • Brooks, P. D., McKnight D. M. , and Bencala K. E. , 1999: The relationship between soil heterotrophic activity, soil dissolved organic carbon (DOC) leachate, and catchment-scale DOC export in headwater catchments. Water Resour. Res., 35 , 18951902.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carroll, S. S., and Carroll T. R. , 1989a: Effect of uneven snow cover on airborne snow water equivalent estimates obtained by measuring terrestrial gamma radiation. Water Resour. Res., 25 , 15051510.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carroll, S. S., and Carroll T. R. , 1989b: Effect of forest biomass on airborne snow water equivalent estimates obtained by measuring terrestrial gamma radiation. Remote Sens. Environ., 27 , 313319.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carroll, T. R., 1987: Operational airborne measurements of snow water equivalent and soil moisture using terrestrial gamma radiation in the United States. Proc. Large Scale Effects of Seasonal Snow Cover Symp., Vancouver, BC, Canada, IAHS Publication 166, 213–223.

  • Cline, D., and Coauthors, 2008: NASA Cold Land Processes Experiment (CLPX 2002/03): Airborne remote sensing. J. Hydrometeor., in press.

  • Cohen, J., and Entekhabi D. , 2001: The influence of snow cover on Northern Hemisphere climate variability. Atmos.–Ocean, 39 , 3553.

  • Cork, H. F., and Loijens H. S. , 1980: The effect of snow drifting on gamma snow survey results. J. Hydrol., 48 , 4151.

  • Doesken, N. J., and Judson A. , 1996: The Snow Booklet: A Guide to the Science, Climatology, and Measurement of Snow in the United States. Department of Atmospheric Science, Colorado State University, 84 pp.

    • Search Google Scholar
    • Export Citation
  • Elder, K., Dozier J. , and Michaelsen J. , 1991: Snow accumulation and distribution in an alpine watershed. Water Resour. Res., 27 , 15411552.

  • Elder, K., Cline D. , Liston G. E. , and Armstrong R. , 2008a: NASA Cold Land Processes Experiment (CLPX 2002/03): Field measurements of snowpack properties and soil moisture. J. Hydrometeor., in press.

    • Search Google Scholar
    • Export Citation
  • Elder, K., Cline D. , Goodbody G. , Houser P. , Liston G. E. , Mahrt L. , and Rutter N. , 2008b: NASA Cold Land Processes Experiment (CLPX 2002/03): Ground-based and near-surface meteorological observations. J. Hydrometeor., in press.

    • Search Google Scholar
    • Export Citation
  • Ellis, A. W., and Leathers D. J. , 1999: Analysis of cold airmass temperature modification across the U.S. Great Plains as a consequence of snow depth and albedo. J. Appl. Meteor., 38 , 696711.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Essery, R., and Pomeroy J. , 2004: Vegetation and topographic control of wind-blown snow distributions in distributed and aggregated simulations for an arctic tundra basin. J. Hydrometeor., 5 , 735744.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fagre, D. B., Peterson D. L. , and Hessl A. E. , 2003: Taking the pulse of mountains: Ecosystem responses to climatic variability. Climatic Change, 59 , 263282.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gelfan, A. N., Pomeroy J. W. , and Kuchment L. S. , 2004: Modeling forest cover influences on snow accumulation, sublimation, and melt. J. Hydrometeor., 5 , 785803.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hiemstra, C. A., Liston G. E. , and Reiners W. A. , 2006a: Observing, modelling, and validating snow redistribution by wind in a Wyoming upper treeline landscape. Ecol. Modell., 197 , 3551.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hiemstra, C. A., Liston G. E. , Pielke R. A. Sr., Birkenheuer D. L. , and Albers S. C. , 2006b: Comparing Local Analysis and Prediction System (LAPS) assimilations with independent observations. Wea. Forecasting, 21 , 10241040.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hinzman, L. D., Kane D. L. , Benson C. S. , and Everett K. R. , 1996: Energy balance and hydrological processes in an Arctic watershed. Landscape Function: Implications for Ecosystem Response to Disturbance. A Case Study in Arctic Tundra, J. F. Reynolds and J. D. Tenhunen, Eds., Ecological Studies Series, Vol. 120, Springer-Verlag, 131–154.

    • Search Google Scholar
    • Export Citation
  • Hinzman, L. D., Goering D. J. , and Kane D. L. , 1998: A distributed thermal model for calculating soil temperature profiles and depth of thaw in permafrost regions. J. Geophys. Res., 103 , D22. 2897528991.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, W., and Carroll T. R. , 1983: Error analysis of airborne gamma radiation soil moisture measurements. Agric. For. Meteor., 28 , 1930.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kane, D. L., Hinzman L. D. , Benson C. S. , and Liston G. E. , 1991: Snow hydrology of a headwater Arctic basin. 1. Physical measurements and process studies. Water Resour. Res., 27 , 10991109.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koch, S. E., DesJardins M. , and Kocin P. J. , 1983: An interactive Barnes objective map analysis scheme for use with satellite and conventional data. J. Climate Appl. Meteor., 22 , 14871503.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liston, G. E., 1995: Local advection of momentum, heat, and moisture during the melt of patchy snow covers. J. Appl. Meteor., 34 , 17051715.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liston, G. E., 2004: Representing subgrid snow cover heterogeneities in regional and global models. J. Climate, 17 , 13811397.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liston, G. E., and Hall D. K. , 1995: An energy balance model of lake ice evolution. J. Glaciol., 41 , 373382.

  • Liston, G. E., and Sturm M. , 1998: A snow-transport model for complex terrain. J. Glaciol., 44 , 498516.

  • Liston, G. E., and Sturm M. , 2002: Winter precipitation patterns in arctic Alaska determined from a blowing-snow model and snow-depth observations. J. Hydrometeor., 3 , 646659.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liston, G. E., and Sturm M. , 2004: The role of winter sublimation in the Arctic moisture budget. Nord. Hydrol., 35 , 325334.

  • Liston, G. E., and Elder K. , 2006a: A distributed snow-evolution modeling system (SnowModel). J. Hydrometeor., 7 , 12591276.

  • Liston, G. E., and Elder K. , 2006b: A meteorological distribution system for high-resolution terrestrial modeling (MicroMet). J. Hydrometeor., 7 , 217234.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liston, G. E., and Hiemstra C. A. , 2008: A simple data assimilation system for complex snow distributions (SnowAssim). J. Hydrometeor., 9 , 9891004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liston, G. E., Winther J-G. , Bruland O. , Elvehøy H. , Sand K. , and Karlöf L. , 2000: Snow and blue-ice distribution patterns on the coastal Antarctic ice sheet. Antarct. Sci., 12 , 6979.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liston, G. E., McFadden J. P. , Sturm M. , and Pielke R. A. Sr., 2002: Modelled changes in arctic tundra snow, energy and moisture fluxes due to increased shrubs. Global Change Biol., 8 , 1732.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liston, G. E., Haehnel R. B. , Sturm M. , Hiemstra C. A. , Berezovskaya S. , and Tabler R. D. , 2007: Simulating complex snow distributions in windy environments using SnowTran-3D. J. Glaciol., 53 , 241256.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liston, G. E., Birkenheuer D. L. , Hiemstra C. A. , Cline D. , and Elder K. , 2008: NASA Cold Land Processes Experiment (CLPX 2002/03): Atmospheric analyses datasets. J. Hydrometeor., 9 , 952956.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luce, C. H., Tarboton D. G. , and Cooley K. R. , 1998: The influence of the spatial distribution of snow on basin-averaged snowmelt. Hydrol. Processes, 12 , 16711683.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marsh, P., 1999: Snowcover formation and melt: Recent advances and future prospects. Hydrol. Processes, 13 , 21172134.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McGinley, J. A., Albers S. C. , and Stamus P. A. , 1991: Validation of a composite convective index as defined by a real-time local analysis system. Wea. Forecasting, 6 , 337356.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meek, D. W., and Hatfield J. L. , 1994: Data quality checking for single station meteorological variables. Agric. For. Meteor., 69 , 85109.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nelson, F. E., Hinkel K. M. , Shiklomanov N. I. , Mueller G. R. , Miller L. L. , and Walker D. A. , 1998: Active-layer thickness in north central Alaska: Systematic sampling, scale, and spatial autocorrelation. J. Geophys. Res., 103 , D22. 2896328973.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peck, E., Carroll T. R. , and Vandermark S. , 1980: Operational aerial snow surveying in the United States. Hydrol. Sci. Bull., 25 , 5162.

  • Pomeroy, J. W., Toth B. , Granger R. J. , Hedstrom N. R. , and Essery R. L. H. , 2003: Variation in surface energetics during snowmelt in a subarctic mountain catchment. J. Hydrometeor., 4 , 702719.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robinson, D. A., Dewey K. F. , and Heim R. R. Jr., 1993: Global snow cover monitoring: An update. Bull. Amer. Meteor. Soc., 74 , 16891696.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seastedt, T. R., 2001: Soils. Structure and Function of an Alpine Ecosystem: Niwot Ridge, Colorado, W. D. Bowman and T. R. Seastedt, Eds., Oxford University Press, 157–173.

    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., Clark M. P. , Armstrong R. L. , McGinnis D. A. , and Pulwarty R. S. , 1999: Characteristics of the western United States snowpack from snowpack telemetry (SNOTEL) data. Water Resour. Res., 35 , 21452160.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sturm, M., Holmgren J. , and Liston G. E. , 1995: A seasonal snow cover classification system for local to global applications. J. Climate, 8 , 12611283.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sturm, M., McFadden J. P. , Liston G. E. , Chapin F. S. III, Racine C. H. , and Holmgren J. , 2001: Snow–shrub interactions in arctic tundra: A hypothesis with climatic implications. J. Climate, 14 , 336344.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taras, B., Sturm M. , and Liston G. E. , 2002: Snow–ground interface temperatures in the Kuparuk River Basin, arctic Alaska: Measurements and model. J. Hydrometeor., 3 , 377394.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vogelmann, J. E., Howard S. M. , Yang L. M. , Larson C. R. , Wylie B. K. , and Van Driel N. , 2001: Completion of the 1990s National Land Cover Data set for the conterminous United States from Landsat Thematic Mapper data and ancillary data sources. Photogramm. Eng. Remote Sens., 67 , 650652.

    • Search Google Scholar
    • Export Citation
  • Wahl, K. L., 1992: Evaluation of trends in runoff in the western United States. Managing Water Resources during Global Change, R. Herrmann, Ed., American Water Resources Association, 701–710.

    • Search Google Scholar
    • Export Citation
  • Williams, M. W., Losleben M. V. , and Hamann H. B. , 2002: Alpine areas in the Colorado Front Range as monitors of climate change and ecosystem response. Geogr. Rev., 92 , 180191.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, D., Goodison B. E. , Metcalfe J. R. , Golubev V. S. , Bates R. , Pangburn T. , and Hanson C. L. , 1998: Accuracy of NWS 8″ standard nonrecording precipitation gauge: Results and application of WMO intercomparison. J. Atmos. Oceanic Technol., 15 , 5468.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, D., Kane D. , Zhang Z. , Legates D. , and Goodison B. , 2005: Bias corrections of long-term (1973–2004) daily precipitation data over the northern regions. Geophys. Res. Lett., 32 .L19501, doi:10.1029/2005GL024057.

    • Search Google Scholar
    • Export Citation
  • Zhang, T., Armstrong R. L. , and Smith J. , 2003: Investigation of the near-surface soil freeze-thaw cycle in the contiguous United States: Algorithm development and validation. J. Geophys. Res., 108 .D22. 8860, doi:10.1029/2003JD003530.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 347 212 17
PDF Downloads 58 20 2