A Simple Data Assimilation System for Complex Snow Distributions (SnowAssim)

Glen E. Liston Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, Colorado

Search for other papers by Glen E. Liston in
Current site
Google Scholar
PubMed
Close
and
Christopher A. Hiemstra Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, Colorado

Search for other papers by Christopher A. Hiemstra in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A methodology for assimilating ground-based and remotely sensed snow data within a snow-evolution modeling system (SnowModel) is presented. The data assimilation scheme (SnowAssim) is consistent with optimal interpolation approaches in which the differences between the observed and modeled snow values are used to constrain modeled outputs. The calculated corrections are applied retroactively to create improved fields prior to the assimilated observations. Thus, one of the values of this scheme is the improved simulation of snow-related distributions throughout the entire snow season, even when observations are only available late in the accumulation and/or ablation periods. Because of this, the technique is particularly applicable to reanalysis applications. The methodology includes the ability to stratify the assimilation into regions where either the observations and/or model has unique error properties, such as the differences between forested and nonforested snow environments. The methodologies are introduced using synthetic data and a simple simulation domain. In addition, the model is applied over NASA’s Cold Land Processes Experiment (CLPX), Rabbit Ears Pass, Colorado, observation domain. Simulations using the data assimilation scheme were found to improve the modeled snow water equivalent (SWE) distributions, and simulated SWE displayed considerably more realistic spatial heterogeneity than that provided by the observations alone.

Corresponding author address: Dr. Glen E. Liston, Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, CO 80523-1375. Email: liston@cira.colostate.edu

This article included in the The Cold Land Processes Experiment (CLPX) special collection.

Abstract

A methodology for assimilating ground-based and remotely sensed snow data within a snow-evolution modeling system (SnowModel) is presented. The data assimilation scheme (SnowAssim) is consistent with optimal interpolation approaches in which the differences between the observed and modeled snow values are used to constrain modeled outputs. The calculated corrections are applied retroactively to create improved fields prior to the assimilated observations. Thus, one of the values of this scheme is the improved simulation of snow-related distributions throughout the entire snow season, even when observations are only available late in the accumulation and/or ablation periods. Because of this, the technique is particularly applicable to reanalysis applications. The methodology includes the ability to stratify the assimilation into regions where either the observations and/or model has unique error properties, such as the differences between forested and nonforested snow environments. The methodologies are introduced using synthetic data and a simple simulation domain. In addition, the model is applied over NASA’s Cold Land Processes Experiment (CLPX), Rabbit Ears Pass, Colorado, observation domain. Simulations using the data assimilation scheme were found to improve the modeled snow water equivalent (SWE) distributions, and simulated SWE displayed considerably more realistic spatial heterogeneity than that provided by the observations alone.

Corresponding author address: Dr. Glen E. Liston, Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, CO 80523-1375. Email: liston@cira.colostate.edu

This article included in the The Cold Land Processes Experiment (CLPX) special collection.

Save
  • Andreadis, K. M., and Lettenmaier D. P. , 2006: Assimilating remotely sensed snow observations into a macroscale hydrology model. Adv. Water Res., 29 , 872886. doi:10.1016/j.advwatres.2005.08.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnes, S. L., 1964: A technique for maximizing details in numerical weather map analysis. J. Appl. Meteor., 3 , 396409.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnes, S. L., 1973: Mesoscale objective analysis using weighted time-series observations. NOAA Tech. Memo. ERL NSSL-62, National Severe Storms Laboratory, Norman, OK 73069, 60 pp. [NTIS COM-73-10781].

  • Blöschl, G., 1999: Scaling issues in snow hydrology. Hydrol. Processes, 13 , 21492175.

  • Bonan, G. B., 1991: A biophysical surface energy budget analysis of soil temperature in the boreal forests of interior Alaska. Water Resour. Res., 27 , 767781.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brasnett, B., 1999: A global analysis of snow depth for numerical weather prediction. J. Appl. Meteor., 38 , 726740.

  • Brown, R., Brasnett B. , and Robinson D. , 2003: Gridded North American monthly snow depth and snow water equivalent for GCM evaluation. Atmos.–Ocean, 41 , 114.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burrough, P. A., and McDonnell R. A. , 1998: Principles of Geographical Information Systems. Oxford University Press, 333 pp.

  • Carroll, S. S., and Carroll T. R. , 1989: Effect of uneven snow cover on airborne snow water equivalent estimates obtained by measuring terrestrial gamma radiation. Water Resour. Res., 25 , 15051510.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carroll, T. R., 1997: Integrated observations and processing of snow cover data in the NWS hydrology program. Preprints, First Symp. on Integrated Observing Systems, Long Beach, CA, Amer. Meteor. Soc., 180–183.

  • Cherry, J. E., Tremblay L. B. , Déry S. J. , and Stieglitz M. , 2005: Reconstructing solid precipitation from snow depth measurements and a land surface model. Water Resour. Res., 41 .W09401, doi:10.1029/2005WR003965.

    • Search Google Scholar
    • Export Citation
  • Cline, D., and Coauthors, 2008: NASA Cold Land Processes Experiment (CLPX 2002/03): Airborne remote sensing. J. Hydrometeor., in press.

  • Cohn, S. E., Sivakumaran N. S. , and Todling R. , 1994: A fixed-lag Kalman smoother for retrospective data assimilation. Mon. Wea. Rev., 122 , 28382867.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Daley, R., 1991: Atmospheric Data Analysis. Cambridge University Press, 457 pp.

  • Doesken, N. J., and Judson A. , 1996: The Snow Booklet: A Guide to the Science, Climatology, and Measurement of Snow in the United States. Department of Atmospheric Science, Colorado State University, 84 pp.

    • Search Google Scholar
    • Export Citation
  • Elder, K., Dozier J. , and Michaelsen J. , 1991: Snow accumulation and distribution in an alpine watershed. Water Resour. Res., 27 , 15411552.

  • Elder, K., Cline D. , Goodbody G. , Houser P. , Liston G. E. , Mahrt L. , and Rutter N. , 2008a: NASA Cold Land Processes Experiment (CLPX 2002/03): Ground-based and near-surface meteorological observations. J. Hydrometeor., in press.

    • Search Google Scholar
    • Export Citation
  • Elder, K., Cline D. , Liston G. E. , and Armstrong R. , 2008b: NASA Cold Land Processes Experiment (CLPX 2002/03): Field measurements of snowpack properties and soil moisture. J. Hydrometeor., in press.

    • Search Google Scholar
    • Export Citation
  • Essery, R., Li L. , and Pomeroy J. , 1999: A distributed model of blowing snow over complex terrain. Hydrol. Processes, 13 , 24232438.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99 , 1014310162.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, Y., Van den Dool H. M. , Lohmann D. , and Mitchell K. , 2006: 1948–98 U.S. hydrological reanalysis by the Noah land data assimilation system. J. Climate, 19 , 12141237.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fisher, M., Leutbecher M. , and Kelly G. A. , 2005: On the equivalence between Kalman smoothing and weak-constraint four-dimensional variational data assimilation. Quart. J. Roy. Meteor. Soc., 131 , 32353246.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gandin, L. S., 1965: Objective Analysis of Meteorological Fields. Israel Program for Scientific Translations, 242 pp.

  • Gelb, A., 1974: Applied Optimal Estimation. MIT Press, 374 pp.

  • Hall, D. K., 1988: Assessment of polar climate change using satellite technology. Rev. Geophys., 26 , 2639.

  • Hall, D. K., Riggs G. A. , and Salomonson V. V. , 2006: MODIS snow and ice products and applications. Science and Instruments, J. J. Qu et al., Eds., Vol. 1, Earth Science Satellite Remote Sensing, Tsinghua University Press and Springer, 154–181.

    • Search Google Scholar
    • Export Citation
  • Hiemstra, C. A., Liston G. E. , and Reiners W. A. , 2002: Snow redistribution by wind and interactions with vegetation at upper treeline in the Medicine Bow Mountains, Wyoming, U.S.A. Arct. Antarct. Alp. Res., 34 , 262273.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hiemstra, C. A., Liston G. E. , and Reiners W. A. , 2006: Observing, modelling, and validating snow redistribution by wind in a Wyoming upper treeline landscape. Ecol. Modell., 197 , 3551.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houser, P. R., Shuttleworth W. J. , Famiglietti J. S. , Gupta H. V. , Syed K. H. , and Goodrich D. C. , 1998: Integration of soil moisture remote sensing and hydrologic modeling using data assimilation. Water Resour. Res., 34 , 34053420.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, W., and Carroll T. , 1983: Error analysis of airborne gamma radiation soil moisture measurements. Agric. For. Meteor., 28 , 1930.

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Karl, T. R., Groisman P. Ya , Knight R. W. , and Heim R. R. , 1993: Recent variations of snow cover and snowfall in North America and their relation to precipitation and temperature variations. J. Climate, 6 , 13271344.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kelly, R. E. J., Chang A. T. C. , Foster J. L. , and Tedesco M. , 2004: AMSR-E/Aqua daily L3 global snow water equivalent EASE-Grids V002. National Snow and Ice Data Center, Boulder, CO, digital media. [Available online at http://nsidc.org.].

  • Koch, S. E., Desjardins M. , and Kocin P. J. , 1983: An interactive Barnes objective map analysis scheme for use with satellite and conventional data. J. Climate Appl. Meteor., 22 , 14871503.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liston, G. E., 1995: Local advection of momentum, heat, and moisture during the melt of patchy snow covers. J. Appl. Meteor., 34 , 17051715.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liston, G. E., 2004: Representing subgrid snow cover heterogeneities in regional and global models. J. Climate, 17 , 13811397.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liston, G. E., and Hall D. K. , 1995: An energy balance model of lake ice evolution. J. Glaciol., 41 , 373382.

  • Liston, G. E., and Sturm M. , 1998: A snow-transport model for complex terrain. J. Glaciol., 44 , 498516.

  • Liston, G. E., and Sturm M. , 2002: Winter precipitation patterns in arctic Alaska determined from a blowing-snow model and snow-depth observations. J. Hydrometeor., 3 , 646659.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liston, G. E., and Sturm M. , 2004: The role of winter sublimation in the Arctic moisture budget. Nord. Hydrol., 35 , 325334.

  • Liston, G. E., and Elder K. , 2006a: A distributed snow-evolution modeling system (SnowModel). J. Hydrometeor., 7 , 12591276.

  • Liston, G. E., and Elder K. , 2006b: A meteorological distribution system for high-resolution terrestrial modeling (MicroMet). J. Hydrometeor., 7 , 217234.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liston, G. E., Pielke R. A. Sr., and Greene E. M. , 1999: Improving first-order snow-related deficiencies in a regional climate model. J. Geophys. Res., 104 , D16. 1955919567.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liston, G. E., Winther J-G. , Bruland O. , Elvehøy H. , Sand K. , and Karlöf L. , 2000: Snow and blue-ice distribution patterns on the coastal Antarctic Ice Sheet. Antarct. Sci., 12 , 6979.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liston, G. E., McFadden J. P. , Sturm M. , and Pielke R. A. Sr., 2002: Modelled changes in arctic tundra snow, energy and moisture fluxes due to increased shrubs. Global Change Biol., 8 , 1732.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liston, G. E., Haehnel R. B. , Sturm M. , Hiemstra C. A. , Berezovskaya S. , and Tabler R. D. , 2007: Simulating complex snow distributions in windy environments using SnowTran-3D. J. Glaciol., 53 , 241256.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liston, G. E., Birkenheuer D. L. , Hiemstra C. A. , Cline D. , and Elder K. , 2008a: NASA Cold Land Processes Experiment (CLPX 2002/03): Atmospheric analyses datasets. J. Hydrometeor., 9 , 952956.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liston, G. E., Hiemstra C. A. , Elder K. , and Cline D. , 2008b: Mesocell study area snow distributions for the Cold Land Processes Experiment (CLPX). J. Hydrometeor., 9 , 957976.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loth, B., and Graf H-F. , 1998: Modeling the snow cover in climate studies 2. The sensitivity to internal snow parameters and interface processes. J. Geophys. Res., 103 , D10. 1132911340.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mesinger, F., and Coauthors, 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87 , 343360.

  • NOHRSC, 2004: Snow Data Assimilation System (SNODAS) data products. National Snow and Ice Data Center, Boulder, CO, digital media. [Available online at http://nsidc.org.].

  • Pomeroy, J. W., Gray D. M. , Shook K. R. , Toth B. , Essery R. L. H. , Pietroniro A. , and Hedstrom N. , 1998: An evaluation of snow accumulation and ablation processes for land surface modelling. Hydrol. Processes, 12 , 23392367.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reichle, R. H., Walker J. P. , Koster R. D. , and Houser P. R. , 2002: Extended versus ensemble Kalman filtering for land data assimilation. J. Hydrometeor., 3 , 728740.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rivington, M., Matthews K. B. , Bellochi G. , and Buchan K. , 2006: Evaluating uncertainty introduced to process-based simulation model estimates by alternative sources of meteorological data. Agric. Syst., 88 , 451471.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodell, M., and Houser P. R. , 2004: Updating a land surface model with MODIS-derived snow cover. J. Hydrometeor., 5 , 10641075.

  • Rodell, M., and Coauthors, 2004: The Global Land Data Assimilation System. Bull. Amer. Meteor. Soc., 85 , 381394.

  • Rutherford, I. D., 1972: Data assimilation by statistical interpolation of forecast error fields. J. Atmos. Sci., 29 , 809815.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seo, D-J., Koren V. , and Cajina N. , 2003: Real-time variational assimilation of hydrologic and hydrometeorological data into operational hydrologic forecasting. J. Hydrometeor., 4 , 627641.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Slater, A. G., and Clark M. P. , 2006: Snow data assimilation via an ensemble Kalman filter. J. Hydrometeor., 7 , 478493.

  • Slater, A. G., and Coauthors, 2001: The representation of snow in land surface schemes: Results from PILPS 2(d). J. Hydrometeor., 2 , 725.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sturm, M., and Liston G. E. , 2003: The snow cover on lakes of the Arctic Coastal Plain of Alaska, U.S.A. J. Glaciol., 49 , 370380.

  • Sturm, M., Holmgren J. , and Liston G. E. , 1995: A seasonal snow cover classification system for local to global applications. J. Climate, 8 , 12611283.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, C., Walker J. P. , and Houser P. R. , 2004: A methodology for snow data assimilation in a land surface model. J. Geophys. Res., 109 .D08108, doi:10.1029/2003JD003765.

    • Search Google Scholar
    • Export Citation
  • Takata, K., Emori S. , and Watanabe T. , 2003: Development of the minimal advanced treatments of surface interaction and runoff. Global Planet. Change, 38 , 209222.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Todling, R., Cohn S. E. , and Sivakumaran N. S. , 1998: Suboptimal schemes for retrospective data assimilation based on the fixed-lag Kalman smoother. Mon. Wea. Rev., 126 , 22742286.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vogelmann, J. E., Howard S. M. , Yang L. M. , Larson C. R. , Wylie B. K. , and Van Driel N. , 2001: Completion of the 1990s National Land Cover Data set for the conterminous United States from Landsat Thematic Mapper data and ancillary data sources. Photogramm. Eng. Remote Sens., 67 , 650652.

    • Search Google Scholar
    • Export Citation
  • Walsh, J. E., Jasperson W. H. , and Ross B. , 1985: Influences of snow cover and soil moisture on monthly air temperature. Mon. Wea. Rev., 113 , 756768.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winstral, A., and Marks D. , 2002: Simulating wind fields and snow redistribution using terrain-based parameters to model snow accumulation and melt over a semi-arid mountain catchment. Hydrol. Processes, 16 , 35853603.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, D., Goodison B. E. , Metcalfe J. R. , Golubev V. S. , Bates R. , Pangburn T. , and Hanson C. L. , 1998: Accuracy of NWS 8″ standard nonrecording precipitation gauge: Results and application of WMO intercomparison. J. Atmos. Oceanic Technol., 15 , 5468.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, D., Kane D. , Zhang Z. , Legates D. , and Goodison B. , 2005: Bias corrections of long-term (1973–2004) daily precipitation data over the northern regions. Geophys. Res. Lett., 32 .L19501, doi:10.1029/2005GL024057.

    • Search Google Scholar
    • Export Citation
  • Zhang, T., 2005: Influence of the seasonal snow cover on the ground thermal regime: An overview. Rev. Geophys., 43 .RG4002, doi:10.1029/2004RG000157.

    • Search Google Scholar
    • Export Citation
  • Zhu, Y., Todling R. , Guo J. , Cohn S. E. , Navon I. M. , and Yang Y. , 2003: The GEOS-3 retrospective data assimilation system: The 6-hour lag case. Mon. Wea. Rev., 131 , 21292150.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 605 217 11
PDF Downloads 306 67 5