Estimates of Net Atmospheric Moisture Flux Convergence over the Amazon Basin: A Comparison of Reanalysis Products

Hanan N. Karam Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts

Search for other papers by Hanan N. Karam in
Current site
Google Scholar
PubMed
Close
and
Rafael L. Bras Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts

Search for other papers by Rafael L. Bras in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Estimates of the net convergence of atmospheric moisture flux over the Amazon Basin, [C], derived using data products from three global reanalyses, the NCEP–NCAR reanalysis (NCEP-1), the NCEP/Department of Energy reanalysis (NCEP-2), and the 40-yr ECMWF Re-Analysis (ERA-40), are compared. Two types of uncertainty in these [C] estimates are distinguished and quantified: “model-associated uncertainty,” which necessarily arises from imperfections in the numerical weather models or data assimilation algorithms, and “postprocessing uncertainty” introduced by operations performed on the original reanalysis data products to compute [C], particularly the finite-difference approximation of divergence. Model-associated uncertainty is found to overwhelm the postprocessing error. A closer look at the time series of this field extending over the period 1980–2001, and their comparison to basin-averaged precipitation and runoff data, reveals the signatures of two potential sources of model-associated errors. 1) ERA-40 estimates of [C] exhibit an artificial shift in 1987, possibly produced by the start of assimilation of Special Sensor Microwave Imager (SSM/I) data. The estimates preceding 1988 are negatively biased relative to the remaining time series, and hence subsequent analysis is limited to the 14-yr period 1988–2001. 2) NCEP-1 and NCEP-2 estimates of [C] show a negative bias over the period 1992–98, which likely originates in biased Television and Infrared Observation Satellite (TIROS) Operational Vertical Sounder (TOVS) data assimilated by these reanalyses. A measure of the random error in the [C] time series produced by each reanalysis, computed using river discharge data as reference, indicates that ERA-40 gives the most accurate estimates of net atmospheric moisture flux convergence for the aforementioned 14-yr period.

Corresponding author address: Hanan Karam, 15 Vassar St., 48-212, Cambridge, MA 02139. Email: hnkaram@mit.edu

Abstract

Estimates of the net convergence of atmospheric moisture flux over the Amazon Basin, [C], derived using data products from three global reanalyses, the NCEP–NCAR reanalysis (NCEP-1), the NCEP/Department of Energy reanalysis (NCEP-2), and the 40-yr ECMWF Re-Analysis (ERA-40), are compared. Two types of uncertainty in these [C] estimates are distinguished and quantified: “model-associated uncertainty,” which necessarily arises from imperfections in the numerical weather models or data assimilation algorithms, and “postprocessing uncertainty” introduced by operations performed on the original reanalysis data products to compute [C], particularly the finite-difference approximation of divergence. Model-associated uncertainty is found to overwhelm the postprocessing error. A closer look at the time series of this field extending over the period 1980–2001, and their comparison to basin-averaged precipitation and runoff data, reveals the signatures of two potential sources of model-associated errors. 1) ERA-40 estimates of [C] exhibit an artificial shift in 1987, possibly produced by the start of assimilation of Special Sensor Microwave Imager (SSM/I) data. The estimates preceding 1988 are negatively biased relative to the remaining time series, and hence subsequent analysis is limited to the 14-yr period 1988–2001. 2) NCEP-1 and NCEP-2 estimates of [C] show a negative bias over the period 1992–98, which likely originates in biased Television and Infrared Observation Satellite (TIROS) Operational Vertical Sounder (TOVS) data assimilated by these reanalyses. A measure of the random error in the [C] time series produced by each reanalysis, computed using river discharge data as reference, indicates that ERA-40 gives the most accurate estimates of net atmospheric moisture flux convergence for the aforementioned 14-yr period.

Corresponding author address: Hanan Karam, 15 Vassar St., 48-212, Cambridge, MA 02139. Email: hnkaram@mit.edu

Save
  • Basist, A. N., and Chelliah M. , 1997: Comparison of tropospheric temperatures derived from the NCEP/NCAR reanalysis, NCEP operational analysis, and the Microwave Sounding Unit. Bull. Amer. Meteor. Soc., 78 , 14311447.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berbery, E. H., and Barros V. R. , 2002: The hydrological cycle of the La Plata basin in South America. J. Hydrometeor., 3 , 630645.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Betts, A. K., Ball J. H. , Viterbo P. , Dai A. G. , and Marengo J. , 2005: Hydrometeorology of the Amazon. J. Hydrometeor., 6 , 764774.

  • Callede, J., Kosuth P. , and de Oliveira E. , 2001: Establishment of the stage-discharge relationship of the River Amazon at Obidos: Normal difference in level method using variable geometry. Hydrol. Sci. J., 46 , 451463.

    • Search Google Scholar
    • Export Citation
  • Callede, J., Guyot J. L. , Ronchail J. , Molinier M. , and De Oliveira E. , 2002: The River Amazon at Obidos (Brazil): Statistical studies of the discharges and water balance. Hydrol. Sci. J., 47 , 321333.

    • Search Google Scholar
    • Export Citation
  • Callede, J., Guyot J. L. , Ronchail J. , L’Hote Y. , Niel H. , and de Oliveira E. , 2004: Evolution of the River Amazon’s discharge at Obidos from 1903 to 1999. Hydrol. Sci. J., 49 , 8597.

    • Search Google Scholar
    • Export Citation
  • Chagnon, F. J. F., and Bras R. L. , 2005: Contemporary climate change in the Amazon. Geophys. Res. Lett., 32 .L13703, doi:10.1029/2005GL022722.

    • Search Google Scholar
    • Export Citation
  • Chagnon, F. J. F., Bras R. L. , and Wang J. , 2004: Climatic shift in patterns of shallow clouds over the Amazon. Geophys. Res. Lett., 31 .L24212, doi:10.1029/2004GL021188.

    • Search Google Scholar
    • Export Citation
  • Chelliah, M., and Ropelewski C. F. , 2000: Reanalyses-based tropospheric temperature estimates: Uncertainties in the context of global climate change detection. J. Climate, 13 , 31873205.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Costa, M. H., and Foley J. A. , 1999: Trends in the hydrologic cycle of the Amazon basin. J. Geophys. Res., 104 , 1418914198.

  • Gutowski W. J. Jr., , Chen Y. , and Ötles Z. , 1997: Atmospheric water vapor transport in NCEP–NCAR reanalyses: Comparison with river discharge in the central United States. Bull. Amer. Meteor. Soc., 78 , 19571969.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 1997: The Global Precipitation Climatology Project (GPCP) combined precipitation dataset. Bull. Amer. Meteor. Soc., 78 , 520.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Kanamitsu, M., Ebisuzaki W. , Woollen J. , Yang S. , Hnilo J. J. , Fiorino M. , and Potter G. L. , 2002: NCEP–DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83 , 16311643.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karam, H. N., and Bras R. L. , 2008: Climatological basin-scale Amazonian evapotranspiration estimated through a water budget analysis. J. Hydrometeor., 9 , 10481060.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kidwell, K. B., 1998: NOAA polar orbiter data user’s guide. NOAA/NESDIS, November 1998 Revision. [Available online at http://www2.ncdc.noaa.gov/docs/podug/cover.htm.].

  • Kistler, R., and Coauthors, 2001: The NCEP–NCAR 50-Year Reanalysis: Monthly means CD-ROM and documentation. Bull. Amer. Meteor. Soc., 82 , 247267.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laurance, W. F., Albernaz A. K. M. , and Da Costa C. , 2001: Is deforestation accelerating in the Brazilian Amazon? Environ. Conserv., 28 , 305311.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marengo, J. A., 2005: Characteristics and spatio-temporal variability of the Amazon River Basin Water Budget. Climate Dyn., 24 , 1122.

  • Oki, T., and Sud Y. C. , 1998: Design of Total Runoff Integrating Pathways (TRIP)—A global river channel network. Earth Interactions, 2 .[Available online at http://EarthInteractions.org.].

    • Search Google Scholar
    • Export Citation
  • Rasmusson, E. M., 1967: Atmospheric water vapor transport and the water balance of North America. Part I: Characteristics of the water vapor flux field. Mon. Wea. Rev., 95 , 403426.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmusson, E. M., 1968: Atmospheric water vapor transport and the water balance of North America. Part II: Large-scale water balance investigations. Mon. Wea. Rev., 96 , 720734.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmusson, E. M., 1971: A study of the hydrology of eastern North America using atmospheric water vapor flux data. Mon. Wea. Rev., 99 , 119135.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roads, J., 2002: Closing the water cycle. GEWEX News, No. 12, International GEWEX Project Office, Silver Spring, MD, 1–8.

  • Roads, J., 2003: The NCEP–NCAR, NCEP–DOE, and TRMM tropical atmosphere hydrologic cycles. J. Hydrometeor., 4 , 826840.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seneviratne, S. I., Viterbo P. , Lüthi D. , and Schär C. , 2004: Inferring changes in terrestrial water storage using ERA-40 reanalysis data: The Mississippi River basin. J. Climate, 17 , 20392057.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stendel, M., Christy J. R. , and Bengtsson L. , 2000: Assessing levels of uncertainty in recent temperature time series. Climate Dyn., 16 , 587601.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stubenrauch, C. J., Chédin A. , Rädel G. , Scott N. A. , and Serrar S. , 2006: Cloud properties and their seasonal and diurnal variability from TOVS Path-B. J. Climate, 19 , 55315553.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sudradjat, A., Ferraro R. R. , and Fiorino M. , 2005: A comparison of total precipitable water between reanalyses and NVAP. J. Climate, 18 , 17901807.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and Guillemot C. J. , 1998: Evaluation of the atmospheric moisture and hydrological cycle in the NCEP-NCAR reanalyses. Climate Dyn., 14 , 213231.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., Stepaniak D. P. , Hurrell J. W. , and Fiorino M. , 2001: Quality of reanalyses in the Tropics. J. Climate, 14 , 14991510.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., Stepaniak D. P. , and Caron J. M. , 2002: Accuracy of atmospheric energy budgets from analyses. J. Climate, 15 , 33433360.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA-40 re-analysis. Quart. J. Roy. Meteor. Soc., 131 , 29613012.

  • Yeh, P. J. F., Irizarry M. , and Eltahir E. A. B. , 1998: Hydroclimatology of Illinois: A comparison of monthly evaporation estimates based on atmospheric water balance and soil water balance. J. Geophys. Res., 103 , 1982319837.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zeng, N., 1999: Seasonal cycle and interannual variability in the Amazon hydrologic cycle. J. Geophys. Res., 104 , 90979106.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 206 62 4
PDF Downloads 118 23 1