Model Diagnosis of Nighttime Minimum Temperature Warming during Summer due to Irrigation in the California Central Valley

Hideki Kanamaru Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by Hideki Kanamaru in
Current site
Google Scholar
PubMed
Close
and
Masao Kanamitsu Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by Masao Kanamitsu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study examines the mechanisms of nighttime minimum temperature warming in the California Central Valley during summer due to irrigation. The Scripps Experimental Climate Prediction Center (ECPC) Regional Spectral Model (RSM) was used to simulate climate under two land surface characteristics: potential natural vegetation and modern land use that includes irrigation and urbanization. In irrigated cropland, soil moisture was prescribed in three different ways: 1) field capacity, 2) half of field capacity, and 3) no addition of water. In the most realistic case of half-field capacity, the July daily minimum temperature in the California Central Valley increased by 3.5°C, in agreement with station observation trends over the past century in the same area. It was found that ground heat flux efficiently keeps the surface warm during nighttime due to increased thermal conductivity of wet soil.

Corresponding author address: Dr. Hideki Kanamaru, University of California, San Diego, MC-0224, 9500 Gilman Dr., La Jolla, CA 92093-0224. Email: hkanamaru@ucsd.edu

Abstract

This study examines the mechanisms of nighttime minimum temperature warming in the California Central Valley during summer due to irrigation. The Scripps Experimental Climate Prediction Center (ECPC) Regional Spectral Model (RSM) was used to simulate climate under two land surface characteristics: potential natural vegetation and modern land use that includes irrigation and urbanization. In irrigated cropland, soil moisture was prescribed in three different ways: 1) field capacity, 2) half of field capacity, and 3) no addition of water. In the most realistic case of half-field capacity, the July daily minimum temperature in the California Central Valley increased by 3.5°C, in agreement with station observation trends over the past century in the same area. It was found that ground heat flux efficiently keeps the surface warm during nighttime due to increased thermal conductivity of wet soil.

Corresponding author address: Dr. Hideki Kanamaru, University of California, San Diego, MC-0224, 9500 Gilman Dr., La Jolla, CA 92093-0224. Email: hkanamaru@ucsd.edu

Save
  • Adegoke, J. O., Pielke R. A. , Eastman J. , Mahmood R. , and Hubbard K. G. , 2003: Impact of irrigation on midsummer surface fluxes and temperature under dry synoptic conditions: A regional atmospheric model study of the U.S. high plains. Mon. Wea. Rev., 131 , 556564.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Al Nakshabandi, G., and Kohnke H. , 1965: Thermal conductivity and diffusivity of soils as related to moisture tension and other physical properties. Agric. For. Meteor., 2 , 271279.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., and Schickedanz P. T. , 1984: The effect of irrigation on warm season precipitation in the southern Great Plains. J. Appl. Meteor., 23 , 865888.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boucher, O., Myhre G. , and Myhre A. , 2004: Direct human influence of irrigation on atmospheric water vapour and climate. Climate Dyn., 22 , 597603.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., and Dudhia J. , 2001: Coupling and advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Modeling implementation and sensitivity. Mon. Wea. Rev., 129 , 569585.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christy, J. R., Norris W. B. , Redmond K. , and Gallo K. P. , 2006: Methodology and results of calculating central California surface temperature trends: Evidence of human-induced climate change? J. Climate, 19 , 548563.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cosby, B. J., Hornberger G. M. , Clapp R. B. , and Ginn T. R. , 1984: A statistical exploration of the relationships of soil moisture characteristics to the physical properties of soils. Water Resour. Res., 20 , 682690.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeHaan, L. L., Kanamitsu M. , Lu C-H. , and Roads J. , 2007: A comparison of the Noah and OSU land surface models in the ECPC seasonal forecast model. J. Hydrometeor., 8 , 10311048.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • De Ridder, K., and Gallee H. , 1998: Land surface–induced regional climate change in southern Israel. J. Appl. Meteor., 37 , 14701484.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dickinson, R. E., Henderson-Sellers A. , and Kennedy P. J. , 1993: Biosphere-Atmosphere Transfer Scheme (BATS) version 1e as coupled to the NCAR Community Climate Model. NCAR/TN-387+STR, Boulder, CO, 72 pp.

  • Ek, M. B., Mitchell K. E. , Lin Y. , Rogers E. , Grunmann P. , Koren V. , Gayno G. , and Tarpley J. D. , 2003: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta Model. J. Geophys. Res., 108 .8851, doi:10.1029/2002JD003296.

    • Search Google Scholar
    • Export Citation
  • Feddema, J. J., Oleson K. W. , Bonan G. B. , Mearns L. O. , Buja L. E. , Meehl G. A. , and Washington W. M. , 2005: The importance of land-cover change in simulating future climates. Science, 310 , 16741678.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Food and Agriculture Organization of the United Nations, 1998: Crop evapotranspiration—Guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper 56, FAO, Rome, Italy, 300 pp. [Available online at http://www.fao.org/docrep/X0490E/X0490E00.htm.].

  • Hong, S-Y., and Pan H-L. , 1996: Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon. Wea. Rev., 124 , 23222339.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Irrigation Training and Research Center, 2003: California crop and soil evapotranspiration. ITRC, California Polytechnic State University, San Luis Obispo, CA, 65 pp. [Available online at http://www.itrc.org/reports/californiacrop/californiacrop.htm.].

  • Johansen, O., 1975: Thermal conductivity of soils. Ph.D. thesis, University of Trondheim, 236 pp. [Available from Universitets-biblioteket I Trondheim, Høgskoleringe 1, 7034 Trondheim, Norway.].

  • Juang, H-M., and Kanamitsu M. , 1994: The NMC Nested Regional Spectral Model. Mon. Wea. Rev., 122 , 326.

  • Kanamaru, H., and Kanamitsu M. , 2007a: Scale-selective bias correction in downscaling of global analysis using a regional model. Mon. Wea. Rev., 135 , 334350.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kanamaru, H., and Kanamitsu M. , 2007b: Fifty-seven-year California Reanalysis Downscaling at 10 km (CaRD10). Part II: Comparison with North American Regional Reanalysis. J. Climate, 20 , 55725592.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., and Kanamaru H. , 2007: Fifty-Seven-year California Reanalysis Downscaling at 10 km (CaRD10). Part I: System detail and validation with observations. J. Climate, 20 , 55535571.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., Ebisuzaki W. , Woolen J. , Potter J. , and Fiorino M. , 2002: NCEP/DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83 , 16311643.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., Kanamaru H. , Cui Y. , and Juang H. , 2005: Parallel implementation of the regional spectral atmospheric model. California Energy Commission Rep. CEC-500-2005-014, Sacramento, CA, 17 pp. [Available online at http://www.energy.ca.gov/2005publications/CEC-500-2005-014/CEC-500-2005-014.PDF.].

  • Kueppers, L. M., and Coauthors, 2008: Seasonal temperature responses to land-use change in the western United States. Global Planet. Change, 60 , 250264. doi:10.1016/j.gloplacha. 2007.03.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lobell, D. B., Bala G. , and Duffy P. B. , 2006: Biogeophysical impacts of cropland management changes on climate. Geophys. Res. Lett., 33 .L06708, doi:10.1029/2005GL025492.

    • Search Google Scholar
    • Export Citation
  • Mahmood, R., Hubbard K. G. , and Carlson C. , 2004: Modification of growing-season surface temperature records in the northern Great Plains due to land-use transformation: Verification of modeling results and implication for global climate change. Int. J. Climatol., 24 , 311327.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahmood, R., Foster S. A. , Keeling T. , Hubbard K. G. , Carlson C. , and Leeper R. , 2006: Impacts of irrigation on 20th century temperature in the northern Great Plains. Global Planet. Change, 54 , 118.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahrt, L., and Pan H. , 1984: A two-layer model of soil hydrology. Bound.-Layer Meteor., 29 , 120.

  • Maxwell, R. M., and Miller N. L. , 2005: Development of a coupled land surface and groundwater model. J. Hydrometeor., 6 , 233247.

  • McCumber, M. C., and Pielke R. A. , 1981: Simulation of the effects of surface fluxes of heat and moisture in a mesoscale numerical model soil layer. J. Geophys. Res., 86 , 99299938.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, D. A., and White R. A. , 1998: A conterminous United States multilayer soil characteristics dataset for regional climate and hydrology modeling. Earth Interactions, 2 .[Available online at http://EarthInteractions.org.].

    • Search Google Scholar
    • Export Citation
  • Oleson, K. W., and Coauthors, 2004: Technical description of the Community Land Model (CLM). NCAR Tech. Note NCAR/TN-461+STR, 173 pp.

  • Pal, J. S., and Coauthors, 2007: The ICTP RegCM3 and RegCNET: Regional climate modeling for the developing world. Bull. Amer. Meteor. Soc., 88 , 13951409.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pan, H. L., and Mahrt L. , 1987: Interaction between soil hydrology and boundary-layer development. Bound.-Layer Meteor., 38 , 185202.

  • Peters-Lidard, C. D., Blackburn E. , Liang X. , and Wood E. F. , 1998: The effect of soil thermal conductivity parameterization on surface energy fluxes and temperatures. J. Atmos. Sci., 55 , 12091224.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pitman, A. J., McAvaney B. J. , Bagnoud N. , and Cheminat B. , 2004: Are inter-model differences in AMIP-II near surface air temperature means and extremes explained by land surface energy balance complexity? Geophys. Res. Lett., 31 .L05205, doi:10.1029/2003GL019233.

    • Search Google Scholar
    • Export Citation
  • USDA, cited. 2007: 2002 Census of Agriculture. USDA National Agricultural Statistics Service. [Available online at http://www.agcensus.usda.gov/Publications/2002/index.asp.].

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 389 187 10
PDF Downloads 167 62 4