NASA Cold Land Processes Experiment (CLPX 2002/03): Spaceborne Remote Sensing

Robert E. Davis Cold Regions Research and Engineering Laboratory, U.S. Army Corps of Engineers, Hanover, New Hampshire

Search for other papers by Robert E. Davis in
Current site
Google Scholar
PubMed
Close
,
Thomas H. Painter Department of Geography, University of Utah, Salt Lake City, Utah

Search for other papers by Thomas H. Painter in
Current site
Google Scholar
PubMed
Close
,
Rick Forster Department of Geography, University of Utah, Salt Lake City, Utah

Search for other papers by Rick Forster in
Current site
Google Scholar
PubMed
Close
,
Don Cline National Operational Remote Sensing Hydrology Center, National Weather Service, Chanhassen, Minnesota

Search for other papers by Don Cline in
Current site
Google Scholar
PubMed
Close
,
Richard Armstrong National Snow and Ice Data Center, University of Colorado, Boulder, Colorado

Search for other papers by Richard Armstrong in
Current site
Google Scholar
PubMed
Close
,
Terry Haran National Snow and Ice Data Center, University of Colorado, Boulder, Colorado

Search for other papers by Terry Haran in
Current site
Google Scholar
PubMed
Close
,
Kyle McDonald Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by Kyle McDonald in
Current site
Google Scholar
PubMed
Close
, and
Kelly Elder Rocky Mountain Research Station, USDA Forest Service, Fort Collins, Colorado

Search for other papers by Kelly Elder in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This paper describes satellite data collected as part of the 2002/03 Cold Land Processes Experiment (CLPX). These data include multispectral and hyperspectral optical imaging, and passive and active microwave observations of the test areas. The CLPX multispectral optical data include the Advanced Very High Resolution Radiometer (AVHRR), the Landsat Thematic Mapper/Enhanced Thematic Mapper Plus (TM/ETM+), the Moderate Resolution Imaging Spectroradiometer (MODIS), and the Multi-angle Imaging Spectroradiometer (MISR). The spaceborne hyperspectral optical data consist of measurements acquired with the NASA Earth Observing-1 (EO-1) Hyperion imaging spectrometer. The passive microwave data include observations from the Special Sensor Microwave Imager (SSM/I) and the Advanced Microwave Scanning Radiometer (AMSR) for Earth Observing System (EOS; AMSR-E). Observations from the Radarsat synthetic aperture radar and the SeaWinds scatterometer flown on QuikSCAT make up the active microwave data.

Corresponding author address: Robert Davis, Cold Regions Research and Engineering Laboratory, USACE, 72 Lyme Road, Hanover, NH 03755-1290. Email: robert.e.davis@erdc.usace.army.mil

This article included in the The Cold Land Processes Experiment (CLPX) special collection.

Abstract

This paper describes satellite data collected as part of the 2002/03 Cold Land Processes Experiment (CLPX). These data include multispectral and hyperspectral optical imaging, and passive and active microwave observations of the test areas. The CLPX multispectral optical data include the Advanced Very High Resolution Radiometer (AVHRR), the Landsat Thematic Mapper/Enhanced Thematic Mapper Plus (TM/ETM+), the Moderate Resolution Imaging Spectroradiometer (MODIS), and the Multi-angle Imaging Spectroradiometer (MISR). The spaceborne hyperspectral optical data consist of measurements acquired with the NASA Earth Observing-1 (EO-1) Hyperion imaging spectrometer. The passive microwave data include observations from the Special Sensor Microwave Imager (SSM/I) and the Advanced Microwave Scanning Radiometer (AMSR) for Earth Observing System (EOS; AMSR-E). Observations from the Radarsat synthetic aperture radar and the SeaWinds scatterometer flown on QuikSCAT make up the active microwave data.

Corresponding author address: Robert Davis, Cold Regions Research and Engineering Laboratory, USACE, 72 Lyme Road, Hanover, NH 03755-1290. Email: robert.e.davis@erdc.usace.army.mil

This article included in the The Cold Land Processes Experiment (CLPX) special collection.

Save
  • Brodzik, M. J., 2003a: CLPX-satellite: SSM/I brightness temperature grids. National Snow and Ice Data Center, Boulder, CO, digital media. [Available online at http://nsidc.org/data/docs/daac/nsidc0144_clpx_ssmi/#6.].

  • Brodzik, M. J., 2003b: CLPX-satellite: AMSR-E brightness temperature grids. National Snow and Ice Data Center, Boulder, CO, digital media. [Available online at http://nsidc.org/data/nsidc-0145.html.].

  • Chang, A. T. C., and Rango A. , 2000: Algorithm theoretical basis document for the AMSR-E snow water equivalent algorithm, version 3.1. NASA Goddard Space Flight Center, 45 pp.

  • Chang, A. T. C., Foster J. L. , and Hall D. K. , 1987: Nimbus-7 SMMR derived global snow cover parameters. Ann. Glaciol., 9 , 3944.

  • Chang, A. T. C., Foster J. L. , and Hall D. K. , 1996: Effects of forest on the snow parameters derived from microwave measurements during the BOREAS winter field campaign. Hydrol. Processes, 10 , 15651574.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cline, D., 2003: CLPX-satellite: AVHRR/HRPT brightness temperatures and reflectances. National Snow and Ice Data Center, Boulder, CO, digital media. [Available online at http://nsidc.org/data/nsidc-0152.html.].

  • Davis, R., 2003: CLPX-satellite: Landsat thematic mapper imagery. National Snow and Ice Data Center, Boulder, CO, digital media. [Available online at http://nsidc.org/data/docs/daac/nsidc0149_clpx.gd.html.].

  • Davis, R., 2004: CLPX-satellite: Multi-angle Imaging Spectroradiometer (MISR) products. National Snow and Ice Data Center, Boulder, CO, digital media. [Available online at http://nsidc.org/data/nsidc-0150.html.].

  • Dozier, J., 1989: Spectral signature of alpine snow cover from the Landsat Thematic Mapper. Remote Sens. Environ., 28 , 922.

  • Frei, A., and Robinson D. A. , 1999: Northern Hemisphere snow extent: Regional variability 1972–1994. Int. J. Climatol., 19 , 15351560.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frolking, S., McDonald K. C. , Kimball J. S. , Way J. B. , Zimmermann R. , and Running S. W. , 1999: Using the space-borne NASA scatterometer (NSCAT) to determine the frozen and thawed seasons. J. Geophys. Res., 104 , D22. 2789527908.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Galantowicz, J. F., and England A. W. , 1991: The Michigan earth grid: Description, registration method for SSM/I data and derivative map projections. Radiation Laboratory, University of Michigan Tech. Rep. 027396-2-T, 19 pp.

  • Goodison, B. E., 1989: Determination of areal snow water equivalent on the Canadian prairies using passive microwave satellite data. Proc12th Canadian Symp. on Remote Sensing, IGARSS 1989, Vancouver, BC, Canada, IEEE, 1243–1246.

  • Green, R. O., Dozier J. , Roberts D. A. , and Painter T. H. , 2002: Spectral snow reflectance models for grain size and liquid water fraction in melting snow for the solar reflected spectrum. Ann. Glaciol., 34 , 7173.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grody, N. C., and Basist A. , 1996: Global identification of snow cover using SSM/I measurements. IEEE Trans. Geosci. Remote Sens., 34 , 237249.

  • Hall, D. K., Riggs G. A. , and Salomonson V. V. , 1995: Development of methods for mapping global snow cover using Moderate Resolution Imaging Spectroradiometer data. Remote Sens. Environ., 54 , 127140.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hall, D. K., Riggs G. A. , Salomonson V. V. , DiGirolamo N. E. , and Bayr K. J. , 2002: MODIS snow-cover products. Remote Sens. Environ., 83 , 181194.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hall, D. K., Riggs G. A. , and Salomonson V. V. , 2006: MODIS snow cover products. National Snow and Ice Data Center, Boulder, CO, digital media. [Available online at http://nsidc.org/data/modis/data.html.].

  • Haran, T., 2003: CLPX-satellite: MODIS radiances, reflectances, snow cover and related grids. National Snow and Ice Data Center, Boulder, CO, digital media. [Available online at http://nsidc.org/data/nsidc-0151.html.].

  • McDonald, K. C., Kimball J. S. , Njoku E. , Zimmermann R. , and Zhao M. , 2004: Variability in springtime thaw in the terrestrial high latitudes: Monitoring a major control on the biospheric assimilation of atmospheric CO2 with spaceborne microwave remote sensing. Earth Interactions, 8 . [Available online at http://EarthInteractions.org.].

    • Search Google Scholar
    • Export Citation
  • Nagler, T., and Rott H. , 1992: Development and intercomparisons of snow mapping algorithms based on SSM/I data. Proc. IGARSS 1992, Houston, TX, IEEE, Catalog 92CH 3041-1, 812–814.

  • Nolin, A. W., Dozier J. , and Mertes L. A. K. , 1993: Mapping alpine snow using a spectral mixture modeling technique. Ann. Glaciol., 17 , 121124.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Painter, T. H., 2003: EO-1 hyperion surface reflectance, snow covered area, and grain size. National Snow and Ice Data Center, Boulder, CO, digital media. [Available online at http://nsidc.org/data/nsidc-0148.html.].

  • Painter, T. H., Dozier J. , Roberts D. A. , Davis R. E. , and Green R. O. , 2003: Retrieval of subpixel snow-covered area and grain size from imaging spectrometer data. Remote Sens. Environ., 85 , 6477.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poe, G., 1990: Optimum interpolation of imaging microwave radiometer data. IEEE Trans. Geosci. Remote Sens., 28 , 800810.

  • Pulliainen, J., and Hallikainen M. , 2001: Retrieval of regional snow water equivalent from space-borne passive microwave observations. Remote Sens. Environ., 75 , 7685.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenthal, W., and Dozier J. , 1996: Automated mapping of montane snow cover at subpixel resolution from the Landsat Thematic Mapper. Water Resour. Res., 32 , 115130.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salomonson, V. V., and Appel I. , 2004: Estimating fractional snow cover from MODIS using the normalized difference snow index. Remote Sens. Environ., 89 , 351360.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tait, A. B., 1998: Estimation of snow water equivalent using passive microwave data. Remote Sens. Environ., 64 , 286291.

  • Zhang, T., and Armstrong R. L. , 2001: Soil freeze/thaw cycles over snow-free land detected by passive microwave remote sensing. Geophys. Res. Lett., 28 , 763766.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1038 563 10
PDF Downloads 137 46 3