A Negative Soil Moisture–Precipitation Relationship and Its Causes

Jiangfeng Wei School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia

Search for other papers by Jiangfeng Wei in
Current site
Google Scholar
PubMed
Close
,
Robert E. Dickinson School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia

Search for other papers by Robert E. Dickinson in
Current site
Google Scholar
PubMed
Close
, and
Haishan Chen School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia

Search for other papers by Haishan Chen in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study examines a lagged soil moisture–precipitation (S–P) correlation for 24 yr of boreal summer (1979–2002) from the 40-yr ECMWF Re-Analysis (ERA-40), the NCEP–Department of Energy (DOE) reanalysis 2 (R-2), the North American Regional Reanalysis (NARR), 10 yr (1986–95) of data from phase 2 of the Global Soil Wetness Project (GSWP-2), and two 24-yr model simulations with the NCAR Community Atmosphere Model version 3.1 (CAM3). The different datasets and model simulations all show a similar negative-dominant S–P correlation pattern with wet areas having more significantly negative correlations than the dry areas. The experiments with CAM3 show that this correlation pattern is not caused by the soil moisture feedback. Rather, the combined effect of the precipitation variability and the memory of soil moisture is the main reason for this correlation pattern. Theoretical analysis confirms this conclusion and shows that the correlation pattern is related to both the precipitation spectrum and the time scale of soil moisture retention. This study suggests that the attribution of lagged correlations of precipitation with soil moisture or related variables should be done cautiously.

* Current affiliation: Center for Ocean–Land–Atmosphere Studies, Calverton, Maryland

+ Current affiliation: Nanjing University of Information Science and Technology, Nanjing, China

Corresponding author address: Jiangfeng Wei, Center for Ocean–Land–Atmosphere Studies, 4041 Powder Mill Rd., Ste. 302, Calverton, MD 20705. Email: jianfeng@cola.iges.org

Abstract

This study examines a lagged soil moisture–precipitation (S–P) correlation for 24 yr of boreal summer (1979–2002) from the 40-yr ECMWF Re-Analysis (ERA-40), the NCEP–Department of Energy (DOE) reanalysis 2 (R-2), the North American Regional Reanalysis (NARR), 10 yr (1986–95) of data from phase 2 of the Global Soil Wetness Project (GSWP-2), and two 24-yr model simulations with the NCAR Community Atmosphere Model version 3.1 (CAM3). The different datasets and model simulations all show a similar negative-dominant S–P correlation pattern with wet areas having more significantly negative correlations than the dry areas. The experiments with CAM3 show that this correlation pattern is not caused by the soil moisture feedback. Rather, the combined effect of the precipitation variability and the memory of soil moisture is the main reason for this correlation pattern. Theoretical analysis confirms this conclusion and shows that the correlation pattern is related to both the precipitation spectrum and the time scale of soil moisture retention. This study suggests that the attribution of lagged correlations of precipitation with soil moisture or related variables should be done cautiously.

* Current affiliation: Center for Ocean–Land–Atmosphere Studies, Calverton, Maryland

+ Current affiliation: Nanjing University of Information Science and Technology, Nanjing, China

Corresponding author address: Jiangfeng Wei, Center for Ocean–Land–Atmosphere Studies, 4041 Powder Mill Rd., Ste. 302, Calverton, MD 20705. Email: jianfeng@cola.iges.org

Save
  • Collins, W. D., and Coauthors, 2006: The formulation and atmospheric simulation of the Community Atmosphere Model Version 3 (CAM3). J. Climate, 19 , 21442161.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dickey, J. O., Ghil M. , and Marcus S. L. , 1991: Extratropical aspects of the 40–50 day oscillation in length-of-day and atmospheric angular momentum. J. Geophys. Res., 96 , D12. 2264322658.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dickinson, R. E., Henderson-Sellers A. , and Kennedy P. J. , 1993: Biosphere Atmosphere Transfer Scheme (BATS) version le as coupled to the NCAR Community Climate Model. NCAR Tech. Note NCAR/TN-275+STR, 72 pp.

  • Dirmeyer, P. A., Gao X. , Zhao M. , Guo Z. , Oki T. , and Hanasaki N. , 2006a: GSWP-2: Multimodel analysis and implications for our perception of the land surface. Bull. Amer. Meteor. Soc., 87 , 13811397.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., Koster R. D. , and Guo Z. , 2006b: Do global models properly represent the feedback between land and atmosphere? J. Hydrometeor., 7 , 11771198.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’Odorico, P., and Porporato A. , 2004: Preferential states in soil moisture and climate dynamics. Proc. Natl. Acad. Sci. USA, 101 , 88488851.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donald, A., and Coauthors, 2006: Near-global impact of the Madden–Julian oscillation on rainfall. Geophys. Res. Lett., 33 .L09704, doi:10.1029/2005GL025155.

    • Search Google Scholar
    • Export Citation
  • Dorman, J. L., and Sellers P. J. , 1989: A global climatology of albedo, roughness length, and stomatal resistance for atmospheric general circulation models as represented by the Simple Biosphere model (SiB). J. Appl. Meteor., 28 , 833855.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ek, M. B., Mitchell K. E. , Lin Y. , Rogers E. , Grunmann P. , Koren V. , Gayno G. , and Tarpley J. D. , 2003: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta Model. J. Geophys. Res., 108 .8851, doi:10.1029/2002JD003296.

    • Search Google Scholar
    • Export Citation
  • Eltahir, E. A. B., 1998: A soil moisture–rainfall feedback mechanism, 1. Theory and observations. Water Resour. Res., 34 , 765776.

  • Eltahir, E. A. B., and Pal J. S. , 1996: Relationship between surface conditions and subsequent rainfall in convective storms. J. Geophys. Res., 101 , D21. 2623726245.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Findell, K. L., and Eltahir E. A. B. , 1997: An analysis of the soil moisture–rainfall feedbacks, based on direct observations from Illinois. Water Resour. Res., 33 , 725735.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Findell, K. L., and Eltahir E. A. B. , 1999: Analysis of the pathways relating soil moisture and subsequent rainfall in Illinois. J. Geophys. Res., 104 , D24. 3156531574.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Findell, K. L., and Eltahir E. A. B. , 2003a: Atmospheric controls on soil moisture–boundary layer interactions. Part I: Framework development. J. Hydrometeor., 4 , 552569.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Findell, K. L., and Eltahir E. A. B. , 2003b: Atmospheric controls on soil moisture–boundary layer interactions. Part II: Feedbacks within the continental United States. J. Hydrometeor., 4 , 570583.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, X., and Dirmeyer P. A. , 2006: A multimodel analysis, validation, and transferability study of global soil wetness products. J. Hydrometeor., 7 , 12181236.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ghil, M., and Mo K. , 1991: Intraseasonal oscillations in the global atmosphere. Part I: Northern Hemisphere and tropics. J. Atmos. Sci., 48 , 752779.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gibson, J. K., Kållberg P. , Uppala S. , Hernandez A. , Nomura A. , and Serrano E. , 1997: ERA description. ECMWF Reanalysis Project Report Series, No. 1, European Centre for Medium-Range Weather Forecasts, Reading, United Kingdom, 77 pp.

  • Giorgi, F., Mearns L. O. , Shields C. , and Mayer L. , 1996: A regional model study of the importance of local versus remote controls of the 1988 drought and the 1993 flood over the central United States. J. Climate, 9 , 11501168.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guo, Z., and Coauthors, 2006: Evaluation of GSWP-2 soil moisture simulations. Part II: Sensitivity to external meteorological forcing. J. Geophys. Res., 111 .D22S03, doi:10.1029/2006JD007845.

    • Search Google Scholar
    • Export Citation
  • Hollinger, S. E., and Isard S. A. , 1994: A soil moisture climatology of Illinois. J. Climate, 7 , 822833.

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Kanamitsu, M., Ebisuzaki W. , Woollen J. , Yang S-K. , Hnilo J. J. , Fiorino M. , and Potter G. L. , 2002: NCEP–DOE AMIP-II reanalysis (R-2). Bull. Amer. Meteor. Soc., 83 , 16311648.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Suarez M. J. , 1996: The influence of land surface moisture retention on precipitation statistics. J. Climate, 9 , 25512567.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., Suarez M. J. , Higgins R. W. , and van den Dool H. M. , 2003: Observational evidence that soil moisture variations affect precipitation. Geophys. Res. Lett., 30 .1241, doi:10.1029/2002GL016571.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2004: Regions of strong coupling between soil moisture and precipitation. Science, 305 , 11381140.

  • Koster, R. D., and Coauthors, 2006: GLACE: The Global Land–Atmosphere Coupling Experiment. Part 1: Overview. J. Hydrometeor., 7 , 590610.

  • Li, H., and Coauthors, 2005: Evaluation of reanalysis soil moisture simulations using updated Chinese soil moisture observations. J. Hydrometeor., 6 , 180193.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madden, R., and Julian P. , 1971: Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28 , 702708.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madden, R., and Julian P. , 1972: Description of global-scale circulation cells in the tropics with a 40–50 day period. J. Atmos. Sci., 29 , 11091123.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madden, R., and Julian P. , 1994: Observations of the 40–50-day tropical oscillation—A review. Mon. Wea. Rev., 122 , 814837.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahrt, L., and Pan H-L. , 1984: A two layer model of soil hydrology. Bound.-Layer Meteor., 29 , 120.

  • Meehl, G. A., 1994: Influence of the land surface in the Asian summer monsoon: External conditions versus internal feedbacks. J. Climate, 7 , 10331049.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mesinger, F., and Coauthors, 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87 , 343360.

  • Mosedale, T. J., Stephenson D. B. , Collins M. , and Mills T. C. , 2006: Granger causality of coupled climate processes: Ocean feedback on the North Atlantic oscillation. J. Climate, 19 , 11821194.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oleson, K. W., and Coauthors, 2004: Technical description of the Community Land Model (CLM). NCAR Tech. Note NCAR/TN-461+STR, 173 pp.

  • Pan, H-L., 1990: A simple parameterization scheme of evapotranspiration over land for the NMC Medium-Range Forecast model. Mon. Wea. Rev., 118 , 25002512.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pan, H-L., and Mahrt L. , 1987: Interaction between soil hydrology and boundary-layer development. Bound.-Layer Meteor., 38 , 185202.

  • Randall, D. A., and Coauthors, 2007: Climate Models and Their Evaluation. Climate Change 2007: The Physical Science Basis, S. D. Solomon et al., Eds., Cambridge University Press, 589–662.

    • Search Google Scholar
    • Export Citation
  • Robock, A., and Coauthors, 2000: The Global Soil Moisture Data Bank. Bull. Amer. Meteor. Soc., 81 , 12811299.

  • Salvucci, G. D., Saleem J. A. , and Kaufmann R. , 2002: Investigating soil moisture precipitation feedbacks with tests of Granger causality. Adv. Water Resour., 25 , 13051312.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scott, R., Entekhabi D. , Koster R. , and Suarez M. , 1997: Timescales of land surface evapotranspiration response. J. Climate, 10 , 559566.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Teuling, A. J., Seneviratne S. I. , Williams C. , and Troch P. A. , 2006: Observed timescales of evapotranspiration response to soil moisture. Geophys. Res. Lett., 33 .L23403, doi:10.1029/2006GL028178.

    • Search Google Scholar
    • Export Citation
  • Triacca, U., 2001: On the use of Granger causality to investigate the human influence on climate. Theor. Appl. Climatol., 69 , 137138.

  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Reanalysis. Quart. J. Roy. Meteor. Soc., 131 , 29613012. doi:10.1256/qj.04.176.

  • van den Hurk, B. J. J. M., Viterbo P. , Beljaars A. C. M. , and Betts A. K. , 2000: Offline validation of the ERA-40 surface scheme. ECMWF Tech. Memo. 295, 42 pp.

  • Vinnikov, K. Y., Robock A. , Speranskaya N. A. , and Schlosser C. A. , 1996: Scales of temporal and spatial variability of midlatitude soil moisture. J. Geophys. Res., 101 , 71637174.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X. L., João C-R. , and Zhang X. , 1996a: Intraseasonal oscillations and associated spatial–temporal structure of precipitation over China. J. Geophys. Res., 101 , D14. 1903519042.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X. L., João C-R. , and Zhang X. , 1996b: Low-frequency oscillations and associated wave motions over Eurasia. Tellus, 48A , 238253.

    • Search Google Scholar
    • Export Citation
  • Wei, J., Dickinson R. E. , and Zeng N. , 2006: Climate variability in a simple model of warm climate land–atmosphere interaction. J. Geophys. Res., 111 .G03009, doi:10.1029/2005JG000096.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2006: Statistical Methods in the Atmospheric Sciences. 2nd ed. Academic Press, 627 pp.

  • Wu, W. R., and Dickinson R. E. , 2004: Time scales of layered soil moisture memory in the context of land-atmosphere interaction. J. Climate, 17 , 27522764.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, W. R., Dickinson R. E. , Wang H. , Liu Y. , and Shaikh M. , 2006: Covariabilities of spring soil moisture and summertime United States precipitation in a climate simulation. Int. J. Climatol., 27 , 429438. doi:10.1002/joc.1419.

    • Search Google Scholar
    • Export Citation
  • Ye, H., and Cho H-R. , 2001: Spatial and temporal characteristics of intraseasonal oscillations of precipitation over the United States. Theor. Appl. Climatol., 68 , 5166.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, C., 2005: Madden–Julian oscillation. Rev. Geophys., 43 , 136.

  • Zhao, M., and Dirmeyer P. A. , 2003: Production and analysis of GSWP-2 near-surface meteorology data sets. COLA Tech. Rep. 159, 22 pp. [Available online at ftp://grads.iges.org/pub/ctr/ctr_159.pdf.].

  • Zheng, X., and Eltahir E. A. B. , 1998: A soil moisture–rainfall feedback mechanism, 2. Numerical experiments. Water Resour. Res., 34 , 777785.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1567 376 15
PDF Downloads 1206 264 12