Surface Melt Area and Water Balance Modeling on the Greenland Ice Sheet 1995–2005

Sebastian H. Mernild International Arctic Research Center and Water and Environmental Research Center, University of Alaska Fairbanks, Fairbanks, Alaska

Search for other papers by Sebastian H. Mernild in
Current site
Google Scholar
PubMed
Close
,
Glen E. Liston Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, Colorado

Search for other papers by Glen E. Liston in
Current site
Google Scholar
PubMed
Close
,
Christopher A. Hiemstra Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, Colorado

Search for other papers by Christopher A. Hiemstra in
Current site
Google Scholar
PubMed
Close
, and
Konrad Steffen Cooperative Institute for Research in the Environmental Sciences, University of Colorado, Boulder, Colorado

Search for other papers by Konrad Steffen in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

SnowModel, a physically based snow-evolution modeling system that includes four submodels—MicroMet, EnBal, SnowPack, and SnowTran-3D—was used to simulate variations in Greenland [including the Greenland Ice Sheet (GrIS)] surface snow and ice melt, as well as water balance components, for 1995–2005. Meteorological observations from 25 stations inside and outside the GrIS were used as model input. Winter and summer mass balance observations, spatial snow depth observations, and snowmelt depletion curves derived from time-lapse photography from the Mittivakkat and Zackenberg glacierized catchments in East Greenland were used to validate the performance of SnowModel. Model results compared well with observed values, confirming the robustness of the model. The yearly modeled GrIS interior nonmelt area differs from satellite observations by a maximum of ∼68 000 km2 (or ∼6%) in 2004, and the lowest uncertainties (<8000 km2, or <1%) occur for the years with the smallest (2005) and most extensive (1996) nonmelt areas. Modeled surface melt occurred at elevations reaching 2950 m MSL for 2005, while the equilibrium line altitude (ELA) fluctuates from 1640 to 600 m MSL. The modeled interannual variability in the nonmelt area also agrees with observation records (R2 = 0.96), yielding simulated GrIS nonmelt covers of 71% for 1996 and 50% for 2005. On average, the simulated nonmelt area decreased ∼6% from 1995 to 2005; this trend is similar to observed values. An average surface mass balance (SMB) storage of 138(±81) km3 yr−1, a GrIS loss of 257(±81) km3 yr−1, and a runoff contribution to the ocean of 392(±58) km3 yr−1 occurred for the period 1995–2005. Approximately 58% and 42% of the runoff came from the GrIS western and eastern drainage areas, respectively. The modeled average specific runoff from the GrIS was 6.71 s−1 km−2 yr−1, which, over the simulation period, represents a contribution of ∼1.1 mm yr−1 to global sea level rise.

Corresponding author address: Dr. Sebastian H. Mernild, International Arctic Research Center and Water and Environmental Research Center, University of Alaska Fairbanks, P.O. Box 750292, Fairbanks, AK 99775-0292. Email: fxsm@uaf.edu

Abstract

SnowModel, a physically based snow-evolution modeling system that includes four submodels—MicroMet, EnBal, SnowPack, and SnowTran-3D—was used to simulate variations in Greenland [including the Greenland Ice Sheet (GrIS)] surface snow and ice melt, as well as water balance components, for 1995–2005. Meteorological observations from 25 stations inside and outside the GrIS were used as model input. Winter and summer mass balance observations, spatial snow depth observations, and snowmelt depletion curves derived from time-lapse photography from the Mittivakkat and Zackenberg glacierized catchments in East Greenland were used to validate the performance of SnowModel. Model results compared well with observed values, confirming the robustness of the model. The yearly modeled GrIS interior nonmelt area differs from satellite observations by a maximum of ∼68 000 km2 (or ∼6%) in 2004, and the lowest uncertainties (<8000 km2, or <1%) occur for the years with the smallest (2005) and most extensive (1996) nonmelt areas. Modeled surface melt occurred at elevations reaching 2950 m MSL for 2005, while the equilibrium line altitude (ELA) fluctuates from 1640 to 600 m MSL. The modeled interannual variability in the nonmelt area also agrees with observation records (R2 = 0.96), yielding simulated GrIS nonmelt covers of 71% for 1996 and 50% for 2005. On average, the simulated nonmelt area decreased ∼6% from 1995 to 2005; this trend is similar to observed values. An average surface mass balance (SMB) storage of 138(±81) km3 yr−1, a GrIS loss of 257(±81) km3 yr−1, and a runoff contribution to the ocean of 392(±58) km3 yr−1 occurred for the period 1995–2005. Approximately 58% and 42% of the runoff came from the GrIS western and eastern drainage areas, respectively. The modeled average specific runoff from the GrIS was 6.71 s−1 km−2 yr−1, which, over the simulation period, represents a contribution of ∼1.1 mm yr−1 to global sea level rise.

Corresponding author address: Dr. Sebastian H. Mernild, International Arctic Research Center and Water and Environmental Research Center, University of Alaska Fairbanks, P.O. Box 750292, Fairbanks, AK 99775-0292. Email: fxsm@uaf.edu

Save
  • Abdalati, W., and Steffen K. , 1997a: Snowmelt on the Greenland Ice Sheet as derived from passive microwave satellite data. J. Climate, 10 , 165175.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Abdalati, W., and Steffen K. , 1997b: The apparent effects of the Mt. Pinatubo eruption on the Greenland ice sheet melt extent. Geophys. Res. Lett., 24 , 17951797.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ACIA, 2005: Arctic Climate Impact Assessment. Cambridge University Press, 1042 pp.

  • Allerup, P., Madsen H. , and Vejen F. , 1998: Estimating true precipitation in arctic areas. Proc. Nordic Hydrological Conf., Helsinki, Finland, Nordic Hydrological Programme Rep. 44, 1–9.

  • Allerup, P., Madsen H. , and Vejen F. , 2000: Correction of precipitation based on off-site weather information. Atmos. Res., 53 , 231250.

  • Anderson, E. A., 1976: A point energy balance model of a snow cover. NOAA Tech. Rep. NWS 19, 150 pp.

  • Bamber, J., Ekholm S. , and Krabill W. , 2001: A new, high-resolution digital elevation model of Greenland fully validated with airborne laser altimeter data. J. Geophys. Res., 106B , 67336746.

    • Search Google Scholar
    • Export Citation
  • Barnes, S. L., 1964: A technique for maximizing details in numerical weather map analysis. J. Appl. Meteor., 3 , 396409.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnes, S. L., 1973: Mesoscale objective analysis using weighted time series observations. NOAA Tech. Memo. ERL NSSL-62, National Severe Storms Laboratory, Norman, OK, 60 pp.

  • Barry, R. G., and Serreze M. C. , 2000: Atmospheric components of the arctic ocean freshwater balance and their interannual variability. The Freshwater Budget of the Arctic Ocean, E. L. Lewis et al., Eds., Kluwer Academic, 45–56.

    • Search Google Scholar
    • Export Citation
  • Bauer, A., 1968: Nouvelle estimation du bilian de masses de L’Inlandsis du Groenland. Deep-Sea Res., 14 , 1317.

  • Benson, C. S., 1962: Stratigraphic studies in the snow and firn of Greenland Ice Sheet. U.S. Army SIPRE Research Rep. 70, 93 pp.

  • Born, E. W., and Böcher J. , 2001: The Ecology of Greenland. Ministry of Environment and Natural Resources, Nuuk, Greenland, 429 pp.

  • Box, J. E., 2002: Survey of Greenland instrumental temperature records: 1973–2001. Int. Climatol., 22 , 18291847.

  • Box, J. E., and Steffen K. , 2001: Sublimation estimates for the Greenland ice sheet using automated weather station observations. J. Geophys. Res., 106 , D24. 3396533982.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Box, J. E., Bromwich D. H. , and Bai L-S. , 2004: Greenland ice sheet surface mass balance 1991–2000: Application of Polar MM5 mesoscale model and in situ data. J. Geophys. Res., 109 .D16105, doi:10.1029/2003JD004451.

    • Search Google Scholar
    • Export Citation
  • Box, J. E., and Coauthors, 2006: Greenland ice sheet surface mass balance variability (1988–2004) from calibrated Polar MM5 output. J. Climate, 19 , 27832800.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Braithwaite, R. J., and Olesen O. B. , 1993: Seasonal variation of ice ablation at the margin of the Greenland ice sheet and its sensitivity to climate change, Qamanarassup sermia, West Greenland. J. Glaciol., 39 , 267274.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Broecker, W. S., and Denton G. H. , 1990: The role of ocean–atmosphere reorganization in glacial cycles. Quat. Sci. Rev., 9 , 305341.

  • Broecker, W. S., Peteet D. M. , and Rind D. , 1985: Does the ocean–atmosphere system have more than one stable mode of operation. Nature, 315 , 2126.

  • Brown, R. D., Brasnett B. , and Robinson D. , 2003: Gridded North American monthly snow depth and snow water equivalent for GCM evaluation. Atmos.–Ocean, 41 , 114.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bruland, O., Liston G. E. , Vonk J. , Sand K. , and Killingtveit A. , 2004: Modelling the snow distribution at two high-Arctic sites at Svalbard, Norway, and at a sub-Arctic site in central Norway. Nord. Hydrol., 35 , 191208.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, J. L., Wilson C. R. , and Tapley B. D. , 2006: Satellite gravity measurements confirm accelerated melting of Greenland ice sheet. Science, 313 , 19581960.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Church, J. A., Greory J. M. , Huybrechts P. , Kuhn M. , Lambeck C. , Nhuan M. T. , Qin D. , and Woodworth P. L. , 2001: Change in sea level. Climate Change 2001: The Scientific Basis, J. T. Houghton et al., Eds., Cambridge University Press, 639–694.

    • Search Google Scholar
    • Export Citation
  • Dodson, R., and Marks D. , 1997: Daily air temperature interpolation at high spatial resolution over a large mountainous region. Climate Res., 8 , 120.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dowdeswell, J. A., and Coauthors, 1997: The mass balance of circum-Arctic glaciers and recent climate change. Quat. Res., 48 , 14.

  • Essery, R. L. H., Li L. , and Pomeroy J. W. , 1999: A distributed model of blowing snow over complex terrain. Hydrol. Processes, 13 , 24232438.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Førland, E. J., and Hanssen-Bauer I. , 2003: Climate variations and implications for precipitations types in the Norwegian Arctic. Norwegian Meteorological Institute Rep. 24/02, 21 pp.

  • Greene, E. M., Liston G. E. , and Pielke R. A. , 1999: Simulation of above treeline snowdrift formation using a numerical snowtransport model. Cold Reg. Sci. Technol., 30 , 135144.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hanna, E., Huybrechts P. , Janssens I. , Cappelen J. , Steffen K. , and Stephens A. , 2005: Runoff and mass balance of the Greenland ice sheet: 1958–2003. J. Geophys. Res., 110 .D13108, doi:10.1029/2004JD005641.

    • Search Google Scholar
    • Export Citation
  • Hanna, E., and Coauthors, 2008: Increased runoff from melt from the Greenland Ice Sheet: A response to global warming. J. Climate, 21 , 331341.

  • Hansen, B. U., and Coauthors, 2008: Present day climate at Zackenberg. High-Arctic Ecosystem Dynamics in a Changing Climate: Ten Years of Monitoring and Research at Zackenberg Research Station,Northeast, Greenland, H. Meltofte et al., Eds., Advances in Ecological Research, Vol. 40, Elsevier, 111–149.

    • Search Google Scholar
    • Export Citation
  • Hasholt, B., Liston G. E. , and Knudsen N. T. , 2003: Snow distribution modelling in the Ammassalik region, southeast Greenland. Nord. Hydrol., 34 , 116.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hasholt, B., Bobrovitskaya N. , Bogen J. , McNamara J. , Mernild S. H. , Milbourn D. , and Walling D. E. , 2006: Sediment transport to the Arctic Ocean and adjoining cold oceans. Nord. Hydrol., 37 , 413432.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hiemstra, C. A., Liston G. E. , and Reiners W. A. , 2002: Snow redistribution by wind and interactions with vegetation at upper treeline in the Medicine Bow Mountains, Wyoming. Arct. Antarct. Alp. Res., 34 , 262273.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hiemstra, C. A., Liston G. E. , and Reiners W. A. , 2006: Observing, modelling, and validating snow redistribution by wind in a Wyoming upper treeline landscape. Ecol. Modell., 197 , 3551.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hinkler, J., Pedersen S. B. , Rasch M. , and Hansen B. U. , 2003: Automatic snow cover monitoring at high temporal and spatial resolution, using images taken by a standard digital camera. Int. J. Remote Sens., 23 , 46694682.

    • Search Google Scholar
    • Export Citation
  • Hinzman, L. D., and Coauthors, 2005: Evidence and implications of recent climate change in northern Alaska and other Arctic regions. Climatic Change, 72 , 251298.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hock, R., and Jansson P. , 2005: Modelling glacier hydrology. Encyclopedia of Hydrological Science, M. Andersen, Ed., John Wiley, 1–9.

  • Iziomon, M. G., Mayer H. , and Matzarakis A. , 2003: Downward atmospheric longwave irradiance under clear and cloudy skies: Measurement and parameterization. J. Atmos. Sol.-Terr. Phys., 65 , 11071116.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janssens, I., and Huybrechts P. , 2000: The treatment of meltwater retention in mass-balance parameterisation of the Greenland Ice Sheet. Ann. Glaciol., 31 , 133140.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knudsen, N. T., and Hasholt B. , 1999: Radio-echo sounding at the Mittivakkat Gletscher, southeast Greenland. Arct. Antarct. Alp. Res., 31 , 321328.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knudsen, N. T., and Hasholt B. , 2004: Mass balance observations at Mittivakkat Glacier, southeast Greenland 1995–2002. Nord. Hydrol., 35 , 381390.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koch, S. E., DesJardins M. , and Kocin P. J. , 1983: An interactive Barnes objective map analysis scheme for use with satellite and conventional data. J. Climate Appl. Meteor., 22 , 14871503.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krabill, W. E., and Coauthors, 2000: Greenland ice sheet: High-elevation balance and peripheral thinning. Science, 289 , 428430.

  • Krabill, W., and Coauthors, 2004: Greenland Ice Sheet: Increased coastal thinning. Geophys. Res. Lett., 31 .L24402, doi:10.1029/2004GL021533.

    • Search Google Scholar
    • Export Citation
  • Kunkel, K. E., 1989: Simple procedures for extrapolation of humidity variables in the mountainous western United States. J. Climate, 2 , 656669.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liston, G. E., 1995: Local advection of momentum, heat, and moisture during the melt of patchy snow covers. J. Appl. Meteor., 34 , 17051715.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liston, G. E., 2004: Representing subgrid snow cover heterogeneities in regional and global models. J. Climate, 17 , 13811397.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liston, G. E., and Hall D. K. , 1995: An energy-balance model of lake-ice evolution. J. Glaciol., 41 , 373382.

  • Liston, G. E., and Sturm M. , 1998: A snow-transport model for complex terrain. J. Glaciol., 44 , 498516.

  • Liston, G. E., and Sturm M. , 2002: Winter precipitation patterns in arctic Alaska determined from a blowing-snow model and snow-depth observations. J. Hydrometeor., 3 , 646659.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liston, G. E., and Sturm M. , 2004: The role of winter sublimation in the Arctic moisture budget. Nord. Hydrol., 35 , 325334.

  • Liston, G. E., and Elder K. , 2006a: A distributed snow-evolution modeling system (SnowModel). J. Hydrometeor., 7 , 12591276.

  • Liston, G. E., and Elder K. , 2006b: A meteorological distribution system for high-resolution terrestrial modeling (MicroMet). J. Hydrometeor., 7 , 217234.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liston, G. E., Winther J-G. , Bruland O. , Elvehøy H. , and Sand K. , 1999: Below surface ice melt on the coastal Antarctic ice sheet. J. Glaciol., 45 , 273285.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liston, G. E., Winther J-G. , Bruland O. , Elvehøy H. , Sand K. , and Karlöf L. , 2000: Snow and blue-ice distribution patterns on the coastal Antarctic ice sheet. Antarct. Sci., 12 , 6979.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liston, G. E., McFadden J. P. , Sturm M. , and Pielke R. A. Sr., 2002: Modeled changes in arctic tundra snow, energy, and moisture fluxes due to increased shrubs. Global Change Biol., 8 , 1732.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liston, G. E., Haehnel R. B. , Sturm M. , Hiemstra C. A. , Berezovskaya S. , and Tabler R. D. , 2007: Simulating complex snow distributions in windy environments using SnowTran-3D. J. Glaciol., 53 , 241256.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luthcke, S. B., and Coauthors, 2006: Recent Greenland ice mass loss by drainage system from satellite gravity observations. Science, 314 , 12861289.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marks, D., Domingo J. , Susong D. , Link T. , and Garen D. , 1999: A spatially distributed energy balance snowmelt model for application in mountain basins. Hydrol. Processes, 13 , 19351959.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mernild, S. H., and Hasholt B. , 2006: Climatic control on river discharge simulations from the Mittivakkat Glacier catchment, Ammassalik Island, SE Greenland. Nord. Hydrol., 37 , 327346.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mernild, S. H., Hasholt B. , and Liston G. E. , 2006a: Water flow through Mittivakkat Glacier, Ammassalik Island, SE Greenland. Dan. J. Geogr., 106 , 2543.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mernild, S. H., Liston G. E. , Hasholt B. , and Knudsen N. T. , 2006b: Snow-distribution and melt modeling for Mittivakkat Glacier, Ammassalik Island, SE Greenland. J. Hydrometeor., 7 , 808824.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mernild, S. H., Hasholt B. , Kane D. L. , Hansen B. U. , Jakobsen B. H. , and Knudsen N. T. , 2007a: Climate, glacier mass balance, and runoff 1993–2005, and in a long term perspective (106 year), Mittivakkat Glacier catchment, Ammassalik Island, SE Greenland. Hydrol. Res., 39 , 239256.

    • Search Google Scholar
    • Export Citation
  • Mernild, S. H., Hasholt B. , and Liston G. E. , 2007b: Climatic control on river discharge simulations, Zackenberg River drainage basin, NE Greenland. Hydrol. Processes, 22 , 19321948. doi:10.1002/hyp.6777.

    • Search Google Scholar
    • Export Citation
  • Mernild, S. H., Liston G. E. , and Hasholt B. , 2007c: Snow-distribution and melt modeling for glaciers in Zackenberg River drainage basin, NE Greenland. Hydrol. Processes, 21 , 32493263. doi:10.1002/hyp.6500.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mernild, S. H., Sigsgaard C. , Rasch M. , Hasholt B. , Hansen B. U. , Stjernholm M. , and Petersen D. , 2007d: Climate, river discharge and suspended sediment transport in the Zackenberg River drainage basin and Young Sund/Tyrolerfjord, northeast Greenland, 1995–2003. Carbon Cycling in Arctic Marine Ecosystems: Case Study Young Sound, S. Rysgaard and R. N. Glud, Eds., Meddr. om Grønland—BioScience, Vol. 58, 24–43.

    • Search Google Scholar
    • Export Citation
  • Mernild, S. H., Liston G. E. , Kane D. L. , Hasholt B. , and Knudsen N. T. , 2008: Spatial snow distribution, runoff, and mass balance modelling for entire Mittivakkat Glacier (1998–2006), Ammassalik Island, SE Greenland. Dan. J. Geogr., 108 , 121136.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moritz, R. E., Bitz C. M. , and Steig E. J. , 2002: Dynamics of recent climate change in the Arctic. Science, 297 , 14971502.

  • Mote, T. L., 2003: Estimation of runoff rates, mass balance, and elevation changes on the Greenland ice sheet from passive microwave observations. J. Geophys. Res., 108 .4052, doi:10.1029/2001JD002032.

    • Search Google Scholar
    • Export Citation
  • Oerlemans, J., 1991: The mass balance of the Greenland ice sheet: Sensitivity to climate change as revealed by energy-balance modelling. Holocene, 1 , 4049.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ohmura, A., and Reeh N. , 1991: New precipitation and accumulation maps for Greenland. J. Glaciol., 37 , 125. 140148.

  • Ohmura, A., Calanca P. , Wild M. , and Anklin M. , 1999: Precipitation, accumulation and mass balance of the Greenland Ice Sheet. Z. Gletscherkunde Glazialgeol., 35 , 120.

    • Search Google Scholar
    • Export Citation
  • Pielke R. A. Sr, , 2002: Mesoscale Meteorological Modeling. Academic Press, 676 pp.

  • Pomeroy, J. W., and Essery R. L. H. , 1999: Turbulent fluxes during blowing snow: Field test of model sublimation predictions. Hydrol. Processes, 13 , 29632975.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pomeroy, J. W., and Brun E. , 2001: Physical properties of snow. Snow Ecology: An Interdisciplinary Examination of Snow-Covered Ecosystems, H. G. Jones et al., Eds., Cambridge University Press, 45–126.

    • Search Google Scholar
    • Export Citation
  • Prasad, R., Tarboton D. G. , Liston G. E. , Luce C. H. , and Seyfried M. S. , 2001: Testing a blowing snow model against distributed snow measurements at Upper Sheep Creek. Water Resour. Res., 37 , 13411357.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Putnins, P., 1970: The climate of Greenland. Climates of the Polar Regions, S. Orvig, Ed., World Survey of Climatology, Vol. 12, Elsevier, 3–112.

    • Search Google Scholar
    • Export Citation
  • Ramillien, G., Lombard A. , Cazanave A. , Ivins E. R. , Llubes M. , Remy F. , and Biancala R. , 2006: Interannual variations of the mass balance of the Antarctic and Greenland ice sheet from GRACE. Global Planet. Change, 53 , 198208.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reeh, N., Mayer C. , Miller H. , Thomson H. H. , and Weidick A. , 1999: Present and past climate control on fjord glaciations in Greenland: Implications for IRD-deposition in the sea. Geophys. Res. Lett., 26 , 10391042.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rignot, E., and Kanagaratnam P. , 2006: Changes in the velocity structure of the Greenland Ice Sheet. Science, 311 , 986990.

  • Ryan, B. C., 1977: A mathematical model for diagnosis and prediction of surface winds in mountainous terrain. J. Appl. Meteor., 16 , 15471564.

    • Search Google Scholar
    • Export Citation
  • Rysgaard, S., Vang T. , Stjernholm M. , Rasmussen B. , Windelin A. , and Kiilsholm S. , 2003: Physical conditions, carbon transport, and climate change impacts in a northeast Greenland fjord. Arct. Anarct. Alp. Res., 35 , 301312.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scambos, T., and Haran T. , 2002: An image-enhanced DEM of the Greenland Ice Sheet. Ann. Glaciol., 34 , 291298.

  • Serreze, M. C., and Barry R. G. , 2005: The Arctic Climate System. Cambridge Atmospheric and Space Science Series, Cambridge University Press, 424 pp.

    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., and Coauthors, 2000: Observational evidence of recent change in the northern high-latitude environment. Climatic Change, 46 , 159207.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., and Coauthors, 2006: The large-scale freshwater cycle of the Arctic. J. Geophys. Res., 111 .C11010, doi:10.1029/2005JC003424.

    • Search Google Scholar
    • Export Citation
  • Sturm, M., Schimel J. , Michaelson G. , Welker J. M. , Oberbauer S. F. , Liston G. E. , Fahnestock J. , and Romanovsky V. E. , 2005: Winter biological processes could help convert Arctic tundra to shrubland. Bioscience, 55 , 1726.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Su, F., Adam J. C. , Trenberth K. E. , and Lettenmaier D. P. , 2006: Evaluation of surface water fluxes of the pan-Arctic land region with a land surface model and ERA-40 reanalysis. J. Geophys. Res., 111 .D05110, doi:10.1029/2005JD006387.

    • Search Google Scholar
    • Export Citation
  • Tarboton, D. G., Chowdhury T. G. , and Jackson T. H. , 1995: A spatially distributed energy balance snowmelt model. Biogeochemistry of Seasonally Snow-Covered Catchments, K. A. Tonnessen, M. W. Williams, and M. Tranter, Eds., IAHS Publ. 228, 141–155.

    • Search Google Scholar
    • Export Citation
  • Tedesco, M., 2007: A new record in 2007 for melting in Greenland. Eos, Trans. Amer. Geophys. Union, 88 , 383.

  • Thomas, R. E., Krabill F. W. , Manizade S. , and Martin C. , 2006: Progressive increase in ice loss from Greenland. Geophys. Res. Lett., 33 .L10503, doi:10.1029/2006GL026075.

    • Search Google Scholar
    • Export Citation
  • Thornton, P. E., Running S. W. , and White M. A. , 1997: Generating surfaces of daily meteorological variables over large regions of complex terrain. J. Hydrol., 190 , 214251.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van de Wal, R. S. W., 1996: Mass balance modelling of the Greenland Ice Sheet: A comparison of an energy balance and a degree-day model. Ann. Glaciol., 23 , 3645.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Velicogna, I., and Wahr J. , 2006: Acceleration of Greenland ice mass loss in spring 2004. Nature, 443 , 329331.

  • Vorosmarty, C. J., and Coauthors, 2001: The hydrological cycle and its role in Arctic and global environmental change: A rationale and strategy for synthesis study. Arctic Research Consortium of the United States, Fairbanks, AK, 84 pp.

  • Walcek, C. J., 1994: Cloud cover and its relationship to relative humidity during a spring midlatitude cyclone. Mon. Wea. Rev., 122 , 10211035.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winstral, A., and Marks D. , 2002: Simulating wind fields and snow redistribution using terrain-based parameters to model snow accumulation and melt over a semi-arid mountain catchment. Hydrol. Processes, 16 , 35853603.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zwally, J. H., and Giovinetto M. B. , 2001: Balance mass flux and ice velocity across the equilibrium line in drainage systems of Greenland. J. Geophys. Res., 106 , 33. 717728.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1853 224 6
PDF Downloads 124 51 5