Probabilistic Multisite Precipitation Downscaling by an Expanded Bernoulli–Gamma Density Network

Alex J. Cannon Meteorological Service of Canada, Vancouver, British Columbia, Canada

Search for other papers by Alex J. Cannon in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A nonlinear, probabilistic synoptic downscaling algorithm for daily precipitation series at multiple sites is presented. The expanded Bernoulli–gamma density network (EBDN) represents the conditional density of multisite precipitation, conditioned on synoptic-scale climate predictors, using an artificial neural network (ANN) whose outputs are parameters of the Bernoulli–gamma distribution. Following the methodology used in expanded downscaling, predicted covariances between sites are forced to match observed covariances through the addition of a constraint to the ANN cost function. The resulting model can be thought of as a regression-based downscaling model with a stochastic weather generator component. Parameters of the Bernoulli–gamma distribution are downscaled from the synoptic-scale circulation, and unresolved temporal variability is generated via an autoregressive noise model. Demonstrated on a multisite precipitation dataset from coastal British Columbia, Canada, the EBDN is capable of specifying the conditional distribution of precipitation at each site, modeling the occurrence and the amount of precipitation simultaneously, reproducing observed spatial relationships between sites, randomly generating realistic synthetic precipitation series, and predicting precipitation amounts in excess of those in the observational record.

Corresponding author address: Alex J. Cannon, Meteorological Service of Canada, 201-401 Burrard St., Vancouver, BC, V6C 3S5, Canada. Email: alex.cannon@ec.gc.ca

Abstract

A nonlinear, probabilistic synoptic downscaling algorithm for daily precipitation series at multiple sites is presented. The expanded Bernoulli–gamma density network (EBDN) represents the conditional density of multisite precipitation, conditioned on synoptic-scale climate predictors, using an artificial neural network (ANN) whose outputs are parameters of the Bernoulli–gamma distribution. Following the methodology used in expanded downscaling, predicted covariances between sites are forced to match observed covariances through the addition of a constraint to the ANN cost function. The resulting model can be thought of as a regression-based downscaling model with a stochastic weather generator component. Parameters of the Bernoulli–gamma distribution are downscaled from the synoptic-scale circulation, and unresolved temporal variability is generated via an autoregressive noise model. Demonstrated on a multisite precipitation dataset from coastal British Columbia, Canada, the EBDN is capable of specifying the conditional distribution of precipitation at each site, modeling the occurrence and the amount of precipitation simultaneously, reproducing observed spatial relationships between sites, randomly generating realistic synthetic precipitation series, and predicting precipitation amounts in excess of those in the observational record.

Corresponding author address: Alex J. Cannon, Meteorological Service of Canada, 201-401 Burrard St., Vancouver, BC, V6C 3S5, Canada. Email: alex.cannon@ec.gc.ca

Save
  • Bishop, C. M., 1995: Neural Networks for Pattern Recognition. Oxford University Press, 482 pp.

  • Brankovic, C., and Molteni F. , 2004: Seasonal climate and variability of the ECMWF ERA-40 model. Climate Dyn., 22 , 139155.

  • Buishand, T. A., and Brandsma T. , 2001: Multisite simulation of daily precipitation and temperature in the Rhine basin by nearest-neighbor resampling. Water Resour. Res., 37 , 27612776.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bürger, G., 1996: Expanded downscaling for generating local weather scenarios. Climate Res., 7 , 111128.

  • Bürger, G., 2002: Selected precipitation scenarios across Europe. J. Hydrol., 262 , 99110.

  • Bürger, G., and Chen Y. , 2005: Regression-based downscaling of spatial variability for hydrologic applications. J. Hydrol., 311 , 299317.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cannon, A. J., cited. 2007a: Multi-site precipitation downscaling via an expanded conditional density network. [Available online at doi:10.1038/npre.2007.446.1.].

    • Search Google Scholar
    • Export Citation
  • Cannon, A. J., 2007b: Nonlinear analog predictor analysis: A coupled neural network/analog model for climate downscaling. Neural Networks, 20 , 444453.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cannon, A. J., and Whitfield P. H. , 2002: Downscaling recent streamflow conditions in British Columbia, Canada using ensemble neural network models. J. Hydrol., 259 , 136151.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cannon, A. J., Whitfield P. H. , and Lord E. R. , 2002: Synoptic map-pattern classification using recursive partitioning and principal component analysis. Mon. Wea. Rev., 130 , 11871206.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Caruana, R., 1997: Multitask learning. Mach. Learn., 28 , 4175.

  • Cawley, G. C., Haylock M. R. , and Dorling S. R. , 2006: Predictive uncertainty in environmental modelling. Proc. Int. Joint Conf. on Neural Networks, Vancouver, BC, Canada, IEEE, 5347–5354.

    • Crossref
    • Export Citation
  • Cawley, G. C., Janacek G. , Haylock M. , and Dorling S. R. , 2007: Predictive uncertainty in environmental modelling. Neural Networks, 20 , 537549.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charles, S. P., Bates B. C. , and Hughes J. P. , 1999: A spatiotemporal model for downscaling precipitation occurrence and amounts. J. Geophys. Res., 104 , D24. 3165731669.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dimopoulos, I., Chronopoulos J. , Chronopoulou-Sereli A. , and Lek S. , 1999: Neural network models to study relationships between lead concentrations in grasses and permanent urban descriptors in Athens city (Greece). Ecol. Modell., 120 , 157165.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dorling, S. R., Foxall R. J. , Mandic D. P. , and Cawley G. C. , 2003: Maximum likelihood cost functions for neural network models of air quality data. Atmos. Environ., 37 , 34353443.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunn, P. K., 2004: Occurrence and quantity of precipitation can be modelled simultaneously. Int. J. Climatol., 24 , 12311239.

  • Faucher, M., Burrows W. R. , and Pandolfo L. , 1999: Empirical-statistical reconstruction of surface marine winds along the western coast of Canada. Climate Res., 11 , 173190.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gangopadhyay, S., Clark M. , and Rajagopalan B. , 2005: Statistical downscaling using K-nearest neighbors. Water Resour. Res., 41 .W02024, doi:10.1029/2004WR003444.

    • Search Google Scholar
    • Export Citation
  • Gardner, M. W., and Dorling S. R. , 1998: Artificial neural networks (the multilayer perceptron)—A review of applications in the atmospheric sciences. Atmos. Environ., 32 , 26272636.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haylock, M. R., Cawley G. C. , Harpham C. , Wilby R. L. , and Goodess C. M. , 2006: Downscaling heavy precipitation over the United Kingdom: A comparison of dynamical and statistical methods and their future scenarios. Int. J. Climatol., 26 , 13971415.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huth, R., Kysely J. , and Dubrovsky M. , 2001: Time structure of observed, GCM-simulated, downscaled, and stochastically generated daily temperature series. J. Climate, 14 , 40474061.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Imbert, A., and Benestad R. E. , 2005: An improvement of analog model strategy for more reliable local climate change scenarios. Theor. Appl. Climatol., 82 , 245255.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mackay, D. J. C., 1998: Gaussian processes—A replacement for supervised neural networks? Neural Networks and Machine Learning, C. M. Bishop, Ed., NATO ASI Series, Vol. 168, Springer, 133–165.

    • Search Google Scholar
    • Export Citation
  • Mekis, E., and Hogg W. D. , 1999: Rehabilitation and analysis of Canadian daily precipitation time series. Atmos.–Ocean, 37 , 5385.

  • Rajagopalan, B., and Lall U. , 1999: A k-nearest-neighbor simulator for daily precipitation and other weather variables. Water Resour. Res., 35 , 30893101.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salathe, E. P., 2005: Downscaling simulations of future global climate with application to hydrologic modelling. Int. J. Climatol., 25 , 419436.

  • Schnabel, R. B., Koontz J. E. , and Weiss B. E. , 1985: A modular system of algorithms for unconstrained minimization. ACM Trans. Math. Software, 11 , 419440.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schoof, J. T., and Pryor S. C. , 2001: Downscaling temperature and precipitation: A comparison of regression-based methods and artificial neural networks. Int. J. Climatol., 21 , 773790.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schoof, J. T., and Robeson S. M. , 2003: Seasonal and spatial variations of serial and cross-correlation matrices used by stochastic weather generators. Climate Res., 24 , 95102.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stahl, K., Moore R. D. , Shea J. M. , Hutchinson D. , and Cannon A. J. , 2008: Coupled modelling of glacier and streamflow response to future climate scenarios. Water Resour. Res., 44 .W02422, doi:10.1029/2007WR005956.

    • Search Google Scholar
    • Export Citation
  • Uvo, C. B., Olsson J. , Morita O. , Jinno K. , Kawamura A. , Nishiyama K. , Koreeda N. , and Nakashima T. , 2001: Statistical atmospheric downscaling for rainfall estimation in Kyushu Island, Japan. Hydrol. Earth Syst. Sci., 5 , 259271.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • von Storch, H., 1999: On the use of “inflation” in statistical downscaling. J. Climate, 12 , 35053506.

  • Wilby, R. L., and Wigley T. M. L. , 1997: Downscaling general circulation model output: A review of methods and limitations. Prog. Phys. Geogr., 21 , 530548.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilby, R. L., Tomlinson O. J. , and Dawson C. W. , 2003: Multi-site simulation of precipitation by conditional resampling. Climate Res., 23 , 183194.

  • Wilby, R. L., Charles S. P. , Zorita E. , Timbal B. , Whetton P. , and Mearns L. O. , 2004: Guidelines for Use of Climate Scenarios Developed from Statistical Downscaling Methods. Intergovernmental Panel on Climate Change, 27 pp. [Available online at http://www.ipcc-data.org/guidelines/.].

  • Wilks, D. S., 1998: Multisite generalization of a daily stochastic precipitation generation model. J. Hydrol., 210 , 178191.

  • Wilks, D. S., 2006: Statistical Methods in the Atmospheric Sciences. 2nd ed. Academic Press, 627 pp.

  • Wilks, D. S., and Wilby R. L. , 1999: The weather generation game: A review of stochastic weather generator models. Prog. Phys. Geogr., 23 , 329357.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, P. M., 1998: Modelling seasonality and trends in daily rainfall data. Advances in Neural Information Processing Systems 10, M. I. Jordan, M. J. Kearns, and S. A. Solla, Eds., MIT Press, 985–991.

    • Search Google Scholar
    • Export Citation
  • Xu, C. Y., 1999: From GCMs to river flow: A review of downscaling methods and hydrologic modelling approaches. Prog. Phys. Geogr., 23 , 229249.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yates, D. S., Gangopadhyay S. , Rajagopalan B. , and Strzepek K. , 2003: A technique for generating regional climate using a nearest-neighbor algorithm. Water Resour. Res., 39 .1199, doi:10.1029/2002WR001769.

    • Search Google Scholar
    • Export Citation
  • Yuval, W. W., and Hsieh, 2002: The impact of time-averaging on the detectability of nonlinear empirical relations. Quart. J. Roy. Meteor. Soc., 128 , 16091622.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zorita, E., and von Storch H. , 1999: The analog method as a simple statistical downscaling technique: Comparison with more complicated methods. J. Climate, 12 , 24742489.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1288 277 18
PDF Downloads 1127 308 17