Impacts of High-Resolution Land Surface Initialization on Regional Sensible Weather Forecasts from the WRF Model

Jonathan L. Case ENSCO, Inc., NASA Short-term Prediction Research and Transition (SPoRT) Center, Huntsville, Alabama

Search for other papers by Jonathan L. Case in
Current site
Google Scholar
PubMed
Close
,
William L. Crosson Universities Space Research Association, Huntsville, Alabama

Search for other papers by William L. Crosson in
Current site
Google Scholar
PubMed
Close
,
Sujay V. Kumar Goddard Earth Sciences and Technology Center, Greenbelt, Maryland

Search for other papers by Sujay V. Kumar in
Current site
Google Scholar
PubMed
Close
,
William M. Lapenta Marshall Space Flight Center, NASA Short-term Prediction Research and Transition (SPoRT) Center, Huntsville, Alabama

Search for other papers by William M. Lapenta in
Current site
Google Scholar
PubMed
Close
, and
Christa D. Peters-Lidard NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Christa D. Peters-Lidard in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This manuscript presents an assessment of daily regional simulations of the Weather Research and Forecasting (WRF) numerical weather prediction (NWP) model initialized with high-resolution land surface data from the NASA Land Information System (LIS) software versus a control WRF configuration that uses land surface data from the National Centers for Environmental Prediction (NCEP) Eta Model. The goal of this study is to investigate the potential benefits of using the LIS software to improve land surface initialization for regional NWP. Fifty-eight individual nested simulations were integrated for 24 h for both the control and experimental (LISWRF) configurations during May 2004 over Florida and the surrounding areas: 29 initialized at 0000 UTC and 29 initialized at 1200 UTC. The land surface initial conditions for the LISWRF runs came from an offline integration of the Noah land surface model (LSM) within LIS for two years prior to the beginning of the month-long study on an identical grid domain to the subsequent WRF simulations. Atmospheric variables used to force the offline Noah LSM integration were provided by the North American Land Data Assimilation System and Global Data Assimilation System gridded analyses.

The LISWRF soil states were generally cooler and drier than the NCEP Eta Model soil states during May 2004. Comparisons between the control and LISWRF runs for one event suggested that the LIS land surface initial conditions led to an improvement in the timing and evolution of a sea-breeze circulation over portions of northwestern Florida. Surface verification statistics for the entire month indicated that the LISWRF runs produced a more enhanced and accurate diurnal range in 2-m temperatures compared to the control as a result of the overall drier initial soil states, which resulted from a reduction in the nocturnal warm bias in conjunction with a reduction in the daytime cold bias. Daytime LISWRF 2-m dewpoints were correspondingly drier than the control dewpoints, again a manifestation of the drier initial soil states in LISWRF. The positive results of the LISWRF experiments help to illustrate the importance of initializing regional NWP models with high-quality land surface data generated at the same grid resolution.

* Current affiliation: Science Applications International Corporation, Beltsville, Maryland

Corresponding author address: Jonathan L. Case, National Space Science and Technology Center, 320 Sparkman Dr., Room 3062, Huntsville, AL 35805. Email: jonathan.case-1@nasa.gov

Abstract

This manuscript presents an assessment of daily regional simulations of the Weather Research and Forecasting (WRF) numerical weather prediction (NWP) model initialized with high-resolution land surface data from the NASA Land Information System (LIS) software versus a control WRF configuration that uses land surface data from the National Centers for Environmental Prediction (NCEP) Eta Model. The goal of this study is to investigate the potential benefits of using the LIS software to improve land surface initialization for regional NWP. Fifty-eight individual nested simulations were integrated for 24 h for both the control and experimental (LISWRF) configurations during May 2004 over Florida and the surrounding areas: 29 initialized at 0000 UTC and 29 initialized at 1200 UTC. The land surface initial conditions for the LISWRF runs came from an offline integration of the Noah land surface model (LSM) within LIS for two years prior to the beginning of the month-long study on an identical grid domain to the subsequent WRF simulations. Atmospheric variables used to force the offline Noah LSM integration were provided by the North American Land Data Assimilation System and Global Data Assimilation System gridded analyses.

The LISWRF soil states were generally cooler and drier than the NCEP Eta Model soil states during May 2004. Comparisons between the control and LISWRF runs for one event suggested that the LIS land surface initial conditions led to an improvement in the timing and evolution of a sea-breeze circulation over portions of northwestern Florida. Surface verification statistics for the entire month indicated that the LISWRF runs produced a more enhanced and accurate diurnal range in 2-m temperatures compared to the control as a result of the overall drier initial soil states, which resulted from a reduction in the nocturnal warm bias in conjunction with a reduction in the daytime cold bias. Daytime LISWRF 2-m dewpoints were correspondingly drier than the control dewpoints, again a manifestation of the drier initial soil states in LISWRF. The positive results of the LISWRF experiments help to illustrate the importance of initializing regional NWP models with high-quality land surface data generated at the same grid resolution.

* Current affiliation: Science Applications International Corporation, Beltsville, Maryland

Corresponding author address: Jonathan L. Case, National Space Science and Technology Center, 320 Sparkman Dr., Room 3062, Huntsville, AL 35805. Email: jonathan.case-1@nasa.gov

Save
  • Baker, R. D., Lynn B. H. , Boone A. , Tao W-K. , and Simpson J. , 2001: The influence of soil moisture, coastline curvature, and land-breeze circulations on sea-breeze-initiated precipitation. J. Hydrometeor., 2 , 193211.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnes, S., 1964: A technique for maximizing details in numerical weather map analysis. J. Appl. Meteor., 3 , 396409.

  • Betts, A., Chen F. , Mitchell K. , and Janjić Z. , 1997: Assessment of the land surface and boundary layer models in two operational versions of the NCEP Eta model using FIFE data. Mon. Wea. Rev., 125 , 28962916.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Briegleb, B. P., Minnis P. , Ramanathan V. , and Harrison E. , 1986: Comparison of regional clear-sky albedos inferred from satellite observations and model computations. J. Climate Appl. Meteor., 25 , 214226.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Case, J. L., LaCasse K. M. , Santanello J. A. , Lapenta W. M. , and Peters-Lidard C. D. , 2007: Improved modeling of land-atmosphere interactions using a coupled version of WRF with the Land Information System. Preprints, 21st Conf. on Hydrology, San Antonio, TX, Amer. Meteor. Soc., 5A.4. [Available online at http://ams.confex.com/ams/pdfpapers/116826.pdf.].

  • Chen, F., and Dudhia J. , 2001: Coupling an advanced land surface hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129 , 569585.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., Warner T. T. , and Manning K. , 2001: Sensitivity of orographic moist convection to landscape variability: A study of the Buffalo Creek, Colorado, flash flood case of 1996. J. Atmos. Sci., 58 , 32043223.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., and Coauthors, 2007: Description and evaluation of the characteristics of the NCAR High-Resolution Land Data Assimilation System. J. Appl. Meteor. Climatol., 46 , 694713.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cosgrove, B. A., and Coauthors, 2003: Real-time and retrospective forcing in the North American Land Data Assimilation System (NLDAS) project. J. Geophys. Res., 108 .8842, doi:10.1029/2002JD003118.

    • Search Google Scholar
    • Export Citation
  • Dai, Y., and Coauthors, 2003: The Common Land Model. Bull. Amer. Meteor. Soc., 84 , 10131023.

  • Derber, J. C., Parrish D. F. , and Lord S. J. , 1991: The new global operational analysis system at the National Meteorological Center. Wea. Forecasting, 6 , 538547.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46 , 30773107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ek, M. B., Mitchell K. E. , Lin Y. , Rogers E. , Grunmann P. , Koren V. , Gayno G. , and Tarpley J. D. , 2003: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res., 108 .8851, doi:10.1029/2002JD003296.

    • Search Google Scholar
    • Export Citation
  • Gutman, G., and Ignatov A. , 1998: Derivation of green vegetation fraction from NOAA/AVHRR for use in numerical weather prediction models. Int. J. Remote Sens., 19 , 15331543.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haines, S. L., Jedlovec G. J. , and Lazarus S. M. , 2007: A MODIS sea surface temperature composite for regional applications. IEEE Trans. Geosci. Remote Sens., 45 , 29192927.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holt, T. R., Niyogi D. , Chen F. , Manning K. , LeMone M. A. , and Qureshi A. , 2006: Effect of land–atmosphere interactions on the IHOP 24–25 May 2002 convection case. Mon. Wea. Rev., 134 , 113133.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S-Y., and Lim J-O. J. , 2006: The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42 , 129151.

  • Janjić, Z. I., 1990: The step-mountain coordinate: Physical package. Mon. Wea. Rev., 118 , 14291443.

  • Janjić, Z. I., 1996: The surface layer in the NCEP Eta model. Preprints, 11th Conf. on Numerical Weather Prediction, Norfolk, VA, Amer. Meteor. Soc., 354–356.

  • Janjić, Z. I., 2002: Nonsingular implementation of the Mellor–Yamada Level 2.5 scheme in the NCEP Meso model. NCEP Office Note 437, 61 pp.

  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43 , 170181.

  • Koster, R., and Suarez M. , 1996: Energy and water balance calculations in the mosaic LSM. NASA Goddard Space Flight Center Tech. Memo. 104606, Vol. 9, 76 pp.

  • Kumar, S. V., and Coauthors, 2006: Land Information System—An interoperable framework for high resolution land surface modeling. Environ. Modell. Software, 21 , 14021415.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, S. V., Peters-Lidard C. D. , Eastman J. L. , and Tao W-K. , 2007: An integrated high-resolution hydrometeorological modeling testbed using LIS and WRF. Environ. Modell. Software, 23 , 169181.

    • Search Google Scholar
    • Export Citation
  • Kumar, S. V., and Coauthors, 2008: A land surface data assimilation framework using the Land Information System: Description and applications. Adv. Water Resour., doi:10.1016/j.advwatres.2008.01.013, in press.

    • Search Google Scholar
    • Export Citation
  • LaCasse, K. M., Splitt M. E. , Lazarus S. M. , and Lapenta W. M. , 2008: The impact of high-resolution sea surface temperatures on the simulated nocturnal Florida marine boundary layer. Mon. Wea. Rev., 136 , 13491372.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liang, X., Lettenmaier D. , Wood E. , and Burges S. , 1994: A simple hydrologically based model of land surface water and energy fluxes for general circulation models. J. Geophys. Res., 99 , 1441514428.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liang, X., Lettenmaier D. , and Wood E. , 1996: One-dimensional statistical dynamic representation of subgrid spatial variability of precipitation in the two-layer variable infiltration capacity model. J. Geophys. Res., 101 , 2140321422.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, Y., and Mitchell K. E. , 2005: The NCEP Stage II/IV hourly precipitation analyses: Development and applications. Preprints. 19th Conf. on Hydrology, San Diego, CA, Amer. Meteor. Soc., 1.2. [Available online at http://ams.confex.com/ams/pdfpapers/83847.pdf.].

    • Search Google Scholar
    • Export Citation
  • Lin, Y., Mitchell K. E. , Rogers E. , and DiMego G. J. , 2005: Using hourly and daily precipitation analyses to improve model water budget. Preprints. Ninth Symp. on Integrated Observing and Assimilation Systems for the Atmosphere, Oceans, and Land Surface, San Diego, CA, Amer. Meteor. Soc., 3.3. [Available online at http://ams.confex.com/ams/pdfpapers/84484.pdf.].

    • Search Google Scholar
    • Export Citation
  • Miller, D. A., and White R. A. , 1998: A conterminous United States multilayer soil characteristics data set for regional climate and hydrology modeling. Earth Interactions, 2 .[Available online at http://EarthInteractions.org.].

    • Search Google Scholar
    • Export Citation
  • Mitchell, K. E., and Coauthors, 2004: The multi-institution North American Land Data Assimilation System (NLDAS): Utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system. J. Geophys. Res., 109 .D07S90, doi:10.1029/2003JD003823.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., Taubman S. J. , Brown P. D. , Iacono M. J. , and Clough S. A. , 1997: Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the long-wave. J. Geophys. Res., 102 , 1666316682.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters-Lidard, C. D., Kumar S. , Tian Y. , Eastman J. L. , and Houser P. , 2004: Global urban-scale land–atmosphere modeling with the Land Information System. Preprints, Symp. on Planning, Nowcasting, and Forecasting in the Urban Zone, Seattle, WA, Amer. Meteor. Soc., 4.1. [Available online at http://ams.confex.com/ams/pdfpapers/73726.pdf.].

  • Robinson, D. A., and Kukla G. , 1985: Maximum surface albedo of seasonally snow-covered lands in the Northern Hemisphere. J. Climate Appl. Meteor., 24 , 402411.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodell, M., Houser P. R. , Berg A. A. , and Famiglietti J. S. , 2005: Evaluation of 10 methods for initializing a land surface model. J. Hydrometeor., 6 , 146155.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Santanello J. A. Jr., , and Carlson T. N. , 2001: Mesoscale simulation of rapid soil drying and its implications for predicting daytime temperature. J. Hydrometeor., 2 , 7188.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sellers, P. J., Mintz Y. , and Dalcher A. , 1986: A simple biosphere model (SiB) for use within general circulation models. J. Atmos. Sci., 43 , 505531.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., Klemp J. B. , Dudhia J. , Gill D. O. , Barker D. M. , Wang W. , and Powers J. G. , 2005: A description of the advanced research WRF Version 2. NCAR Tech Note NCAR/TN–468+STR, 88 pp.

  • Smagorinsky, J., Manabe S. , and Holloway J. L. Jr., 1965: Numerical results from a nine-level general circulation model of the atmosphere. Mon. Wea. Rev., 93 , 727768.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, C. B., Lakhtakia M. N. , Capehart W. J. , and Carlson T. N. , 1994: Initialization of soil-water content in regional-scale atmospheric prediction models. Bull. Amer. Meteor. Soc., 75 , 585593.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sud, Y., and Mocko D. , 1999: New snow-physics to complement SSiB. Part I: Design and evaluation with ISLSCP Initiative I datasets. J. Meteor. Soc. Japan, 77 , 335348.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sutton, C., Hamill T. M. , and Warner T. T. , 2006: Will perturbing soil moisture improve warm-season ensemble forecasts? A proof of concept. Mon. Wea. Rev., 134 , 31743189.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trier, S. B., Chen F. , and Manning K. W. , 2004: A study of convective initiation in a mesoscale model using high-resolution land surface initial conditions. Mon. Wea. Rev., 132 , 29542976.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weaver, C. P., 2004a: Coupling between large-scale atmospheric processes and mesoscale land–atmosphere interactions in the U.S. southern Great Plains during summer. Part I: Case studies. J. Hydrometeor., 5 , 12231246.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weaver, C. P., 2004b: Coupling between large-scale atmospheric processes and mesoscale land–atmosphere interactions in the U.S. southern Great Plains during summer. Part II: Mean impacts of the mesoscale. J. Hydrometeor., 5 , 12471258.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zobler, L., 1986: A world soil file for global climate modeling. NASA Tech. Memo. 87802, 32 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 947 474 21
PDF Downloads 444 119 16