• Alcoba, M., and M. Gosset, 2015: Verification study over West Africa of PMW precipitation products using X-pol radar observations and rain gauges. H-SAF Final Rep. HSAF_AS15_03, 45 pp., https://hsaf.meteoam.it/documents/visiting-scientist/HSAF_AS15_03_Final_Report.pdf.

  • Alemohammad, S. H., K. A. McColl, A. G. Konings, D. Entekhabi, and A. Stoffelen, 2015: Characterization of precipitation product errors across the United States using multiplicative triple collocation. Hydrol. Earth Syst. Sci., 19, 34893503, https://doi.org/10.5194/hess-19-3489-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brocca, L., F. Melone, T. Moramarco, and W. Wagner, 2013: A new method for rainfall estimation through soil moisture observations. Geophys. Res. Lett., 40, 853858, https://doi.org/10.1002/grl.50173.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brocca, L., and Coauthors, 2014: Soil as a natural rain gauge: Estimating global rainfall from satellite soil moisture data. J. Geophys. Res. Atmos., 119, 51285141, https://doi.org/10.1002/2014JD021489.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brocca, L., and Coauthors, 2015: Rainfall estimation from in situ soil moisture observations at several sites in Europe: An evaluation of SM2RAIN algorithm, J. Hydrol. Hydromech., 63, 201209, https://doi.org/10.1515/johh-2015-0016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brocca, L., and Coauthors, 2019: SM2RAIN–ASCAT (2007–2018): Global daily satellite rainfall data from ASCAT soil moisture observations. Earth Syst. Sci. Data, 11, 15831601, https://doi.org/10.5194/essd-11-1583-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • C3S, 2017: ERA5: Fifth generation of ECMWF atmospheric reanalyses of the global climate. Copernicus Climate Change Service Climate Data Store (CDS), accessed 7 February 2019, https://doi.org/10.24381/cds.e2161bac.

    • Crossref
    • Export Citation
  • Caires, S., and A. Sterl, 2003: Validation of ocean wind and wave data using triple collocation. J. Geophys. Res., 108, 3098, https://doi.org/10.1029/2002JC001491.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Casella, D., and Coauthors, 2013: Transitioning from CRD to CDRD in Bayesian retrieval of rainfall from satellite passive microwave measurements: Part 2. Overcoming database profile selection ambiguity by consideration of meteorological control on microphysics. IEEE Trans. Geosci. Remote Sens., 51, 46504671, https://doi.org/10.1109/TGRS.2013.2258161.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chakraborty, A., R. Kumar, and A. Stoffelen, 2013: Validation of ocean surface winds from the OCEANSAT-2 scatterometer using triple collocation. Remote Sens. Lett., 4, 8493, https://doi.org/10.1080/2150704X.2012.693967.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., and Coauthors, 2017: Application of triple collocation in ground-based validation of Soil Moisture Active/Passive (SMAP) Level 2 data products. IEEE J. Sel. Topics Appl. Earth Obs., 10, 489502, https://doi.org/10.1109/JSTARS.2016.2569998.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., W. T. Crow, R. Bindlish, A. Colliander, M. Burgin, J. Asanuma, and K. Aida, 2018: Global-scale evaluation of SMAP, SMOS and ASCAT soil moisture products using triple collocation. Remote Sens. Environ., 214C, 113, https://doi.org/10.1016/j.rse.2018.05.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ciabatta, L., A. C. Marra, G. Panegrossi, D. Casella, P. Sanò, S. Dietrich, C. Massari, and L. Brocca, 2017: Daily precipitation estimation through different microwave sensors: Verification study over Italy. J. Hydrol., 545, 436450, https://doi.org/10.1016/j.jhydrol.2016.12.057.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, J., W. T. Crow, and R. H. Reichle, 2020: Improving rain/no-rain detection skill by merging precipitation estimates from different sources. J. Hydrometeor., 21, 24192429, https://doi.org/10.1175/JHM-D-20-0097.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Draper, C., R. Reichle, R. de Jeu, V. Naeimi, R. Parinuss, and W. Wagner, 2013: Estimating root mean square errors in remotely sensed soil moisture over continental scale domains. Remote Sens. Environ., 137, 288298, https://doi.org/10.1016/j.rse.2013.06.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ebert, E. E., J. E. Janowiak, and C. Kidd, 2007: Comparison of near-real-time precipitation estimates from satellite observations and numerical models. Bull. Amer. Meteor. Soc., 88, 4764, https://doi.org/10.1175/BAMS-88-1-47.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fang, H., S. Wei, C. Jiang, and K. Scipal, 2012: Theoretical uncertainty analysis of global MODIS, CYCLOPES, and GLOBCARBON LAI products using a triple collocation method. Remote Sens. Environ., 124, 610621, https://doi.org/10.1016/j.rse.2012.06.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gruber, A., C.-H. Su, W. T. Crow, S. Zwieback, W. A. Dorigo, and W. Wagner, 2016a: Estimating error cross-correlation in soil moisture data sets using extended collocation analysis. J. Geophys. Res. Atmos., 121, 12081219, https://doi.org/10.1002/2015JD024027.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gruber, A., C.-H. Su, S. Zwieback, W. Crow, W. Dorigo, and W. Wagner, 2016b: Recent advances in (soil moisture) triple collocation analysis. Int. J. Appl. Earth Obs. Geoinf., 45, 200211, https://doi.org/10.1016/j.jag.2015.09.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2018: Operational global reanalysis: Progress, future directions and synergies with NWP. ECMWF ERA Rep. Series 27, 63 pp., https://doi.org/10.21957/tkic6g3wm.

    • Crossref
    • Export Citation
  • Hossain, F., and E. N. Anagnostou, 2006: A two-dimensional satellite rainfall error model. IEEE Trans. Geosci. Remote Sens., 44, 15111522, https://doi.org/10.1109/TGRS.2005.863866.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kidd, C., P. Bauer, J. Turk, G. Huffman, R. Joyce, K.-L. Hsu, and D. Braithwaite, 2012: Intercomparison of high-resolution precipitation products over Northwest Europe. J. Hydrometeor., 13, 6783, https://doi.org/10.1175/JHM-D-11-042.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kidd, C., A. Becker, G. J. Huffman, C. L. Muller, P. Joe, G. Skofronick-Jackson, and D. B. Kirschbaum, 2017: So, how much of the Earth’s surface is covered by rain gauges? Bull. Amer. Meteor. Soc., 98, 6978, https://doi.org/10.1175/BAMS-D-14-00283.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, C., G. Tang, and Y. Hong, 2018: Cross-evaluation of ground-based, multi-satellite and reanalysis precipitation products: Applicability of the triple collocation method across mainland China. J. Hydrol., 562, 7183, https://doi.org/10.1016/j.jhydrol.2018.04.039.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahfouf, J.-F., B. Brasnett, and S. Gagnon, 2007: A Canadian Precipitation Analysis (CaPA) Project: Description and preliminary results. Atmos.–Ocean, 45, 117, https://doi.org/10.3137/ao.v450101.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mao, J., and B. Yan, 2019: Global monthly mean leaf area index climatology, 1981-2015. ORNL DAAC, accessed 15 September 2020, https://doi.org/10.3334/ORNLDAAC/1653.

    • Crossref
    • Export Citation
  • Massari, C., W. Crow, and L. Brocca, 2017: An assessment of the performance of global rainfall estimates without ground-based observations. Hydrol. Earth Syst. Sci., 21, 43474361, https://doi.org/10.5194/hess-21-4347-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Massari, C., and Coauthors, 2020: A daily 25 km short-latency rainfall product for data-scarce regions based on the integration of the Global Precipitation Measurement mission rainfall and multiple-satellite soil moisture products. Hydrol. Earth Syst. Sci., 24, 26872710, https://doi.org/10.5194/hess-24-2687-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McColl, K. A., J. Vogelzang, A. G. Konings, D. Entekhabi, M. Piles, and A. Stoffelen, 2014: Extended triple collocation: Estimating errors and correlation coefficients with respect to an unknown target. Geophys. Res. Lett., 41, 62296236, https://doi.org/10.1002/2014GL061322.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McColl, K. A., A. Roy, C. Derksen, A. G. Konings, S. H. Alemohammed, and D. Entekhabi, 2016: Triple collocation for binary and categorical variables: Application to validating landscape freeze/thaw retrievals. Remote Sens. Environ., 176, 3142, https://doi.org/10.1016/j.rse.2016.01.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mugnai, A., and Coauthors, 2013a: Precipitation products from the hydrology SAF. Nat. Hazards Earth Syst. Sci., 13, 19591981, https://doi.org/10.5194/nhess-13-1959-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mugnai, A., and Coauthors, 2013b: CDRD and PNPR satellite passive microwave precipitation retrieval algorithms: EuroTRMM/EURAINSAT origins and H-SAF operations. Nat. Hazards Earth Syst. Sci., 13, 887912, https://doi.org/10.5194/nhess-13-887-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pierdicca, N., F. Fascetti, L. Pulvirenti, R. Crapolicchio, and J. Muñoz-Sabater, 2015: Quadruple collocation analysis for soil moisture product assessment. IEEE Geosci. Remote Sens. Lett., 12, 15951599, https://doi.org/10.1109/LGRS.2015.2414654.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prein, A. F., and A. Gobiet, 2017: Impacts of uncertainties in European gridded precipitation observations on regional climate analysis. Int. J. Climatol., 37, 305327, https://doi.org/10.1002/joc.4706.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Puca, S., and Coauthors, 2014: The validation service of the hydrological SAF geostationary and polar satellite precipitation products. Nat. Hazards Earth Syst. Sci., 14, 871889, https://doi.org/10.5194/nhess-14-871-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roebeling, R. A., E. L. Wolters, J. F. Meirink, and H. Leijnse, 2012: Triple collocation of summer precipitation retrievals from SEVIRI over Europe with gridded rain gauge and weather radar data. J. Hydrometeor., 13, 15521566, https://doi.org/10.1175/JHM-D-11-089.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sanò, P., D. Casella, A. Mugnai, G. Schiavon, E. A. Smith, and G. J. Tripoli, 2013: Transitioning from CRD to CDRD in Bayesian retrieval of rainfall from satellite passive microwave measurements: Part 1. Algorithm description and testing. IEEE Trans. Geosci. Remote Sens., 51, 41194143, https://doi.org/10.1109/TGRS.2012.2227332.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sanò, P., G. Panegrossi, D. Casella, F. Di Paola, L. Milani, A. Mugnai, M. Petracca, and S. Dietrich, 2015: The Passive microwave Neural network Precipitation Retrieval (PNPR) algorithm for AMSU/MHS observations: description and application to European case studies. Atmos. Meas. Tech., 8, 837857, https://doi.org/10.5194/amt-8-837-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sapiano, M. R. P., and P. A. Arkin, 2009: An intercomparison and validation of high-resolution satellite precipitation estimates with 3-hourly gauge data. J. Hydrometeor., 10, 149166, https://doi.org/10.1175/2008JHM1052.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scipal, K., W. Dorigo, and R. de Jeu, 2010: Triple collocation – A new tool to determine the error structure of global soil moisture products. 2010 IEEE Int. Geoscience and Remote Sensing Symp., Honolulu, HI, IEEE, 4426–4429, https://doi.org/10.1109/IGARSS.2010.5652128.

    • Crossref
    • Export Citation
  • Stampoulis, D., and E. N. Anagnostou, 2012: Evaluation of global satellite rainfall products over continental Europe. J. Hydrometeor., 13, 588603, https://doi.org/10.1175/JHM-D-11-086.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Su, C.-H., and D. Ryu, 2015: Multi-scale analysis of bias correction of soil moisture. Hydrol. Earth Syst. Sci., 19, 1731, https://doi.org/10.5194/hess-19-17-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tian, Y., G. J. Huffman, R. F. Adler, L. Tang, M. Sapiano, V. Maggioni, and H. Wu, 2013: Modeling errors in daily precipitation measurements: Additive or multiplicative? Geophys. Res. Lett., 40, 20602065, https://doi.org/10.1002/grl.50320.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Engelen, A., A. Klein Tank, G. van de Schrier, and L. Klok, 2008: Towards an operational system for assessing observed changes in climate extremes. Royal Netherlands Meteorological Institute European Climate Assessment & Dataset Rep., 68 pp., https://knmi-ecad-assets-prd.s3.amazonaws.com/documents/ECAD_report_2008.pdf.

  • Villarini, G., P. V. Mandapaka, W. F. Krajewski, and R. J. Moore, 2008: Rainfall and sampling uncertainties: A rain gauge perspective. J. Geophys. Res., 113, D11102, https://doi.org/10.1029/2007JD009214.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, H., J. Zhu, and J. Yang, 2014: Error analysis on ESA’s Envisat ASAR wave mode significant wave height retrievals using triple collocation model. Remote Sens., 6, 12 21712 233, https://doi.org/10.3390/rs61212217.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Q., Y. Zeng, C. M. Mannaerts, and V. R. Golroudbary, 2018: Determining relative errors of satellite precipitation data over the Netherlands. Proc. Second Int. Electronic Conference on Remote Sensing (ECRS 2018), Online, MDPI, 7 pp., https://doi.org/10.3390/ecrs-2-05139.

    • Crossref
    • Export Citation
  • Zandler, H., I. Haag, and C. Samimi, 2019: Evaluation needs and temporal performance differences of gridded precipitation products in peripheral mountain regions. Sci. Rep., 9, 15118, https://doi.org/10.1038/s41598-019-51666-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ziese, M., A. Rauthe-Schöch, A. Becker, P. Finger, A. Meyer-Christoffer, and U. Schneider, 2018: GPCC full data daily version.2018 at 1.0°: Daily land-surface precipitation from rain-gauges built on gts-based and historic data. DWD, accessed 1 September 2020, https://doi.org/10.5676/DWD_GPCC/FD_D_V2018_100.

    • Crossref
    • Export Citation
  • Zwieback, S., K. Scipal, W. Dorigo, and W. Wagner, 2012: Structural and statistical properties of the collocation technique for error characterization. Nonlinear Processes Geophys., 19, 6980, https://doi.org/10.5194/npg-19-69-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 176 176 176
Full Text Views 17 17 17
PDF Downloads 22 22 22

Enhanced Large-Scale Validation of Satellite-Based Land Rainfall Products

View More View Less
  • 1 SSAI, Inc., Lanham, Maryland
  • 2 Hydrology and Remote Sensing Laboratory, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, Maryland
  • 3 Research Institute for Geo-Hydrological Protection, Italian National Research Council, Perugia, Italy
  • 4 Institute of Atmospheric Sciences and Climate, Italian National Research Council, Rome, Italy
  • 5 National Civil Protection Department, Rome, Italy
© Get Permissions
Restricted access

Abstract

Satellite-based precipitation estimates (SPEs) are generally validated using ground-based rain gauge or radar observations. However, in poorly instrumented regions, uncertainty in these references can lead to biased assessments of SPE accuracy. As a result, at regional or continental scales, an objective basis to evaluate SPEs is currently lacking. Here, we evaluate the potential for large-scale, spatially continuous evaluation of SPEs over land via the application of collocation-based techniques [i.e., triple collocation (TC) and quadruple collocation (QC) analyses]. Our collocation approach leverages the Soil Moisture to Rain (SM2RAIN) rainfall product, derived from the time series analysis of satellite-based soil moisture retrievals, in combination with independent rainfall datasets acquired from ground observations and climate reanalysis to validate four years of the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) Satellite Application Facility on Support to Operational Hydrology and Water Management (H-SAF) H23 daily rainfall product. Large-scale maps of the H23 correlation metric are generated using both TC and QC analyses. Results demonstrate that the SM2RAIN product is a uniquely valuable independent product for collocation analyses, because other available large-scale rainfall datasets are often based on overlapping data sources and algorithms. In particular, the availability of SM2RAIN facilitates the large-scale evaluation of SPE products like H23—even in areas that lack adequate ground-based observations to apply traditional validation approaches.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: F. Chen, fan.chen@usda.gov

Abstract

Satellite-based precipitation estimates (SPEs) are generally validated using ground-based rain gauge or radar observations. However, in poorly instrumented regions, uncertainty in these references can lead to biased assessments of SPE accuracy. As a result, at regional or continental scales, an objective basis to evaluate SPEs is currently lacking. Here, we evaluate the potential for large-scale, spatially continuous evaluation of SPEs over land via the application of collocation-based techniques [i.e., triple collocation (TC) and quadruple collocation (QC) analyses]. Our collocation approach leverages the Soil Moisture to Rain (SM2RAIN) rainfall product, derived from the time series analysis of satellite-based soil moisture retrievals, in combination with independent rainfall datasets acquired from ground observations and climate reanalysis to validate four years of the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) Satellite Application Facility on Support to Operational Hydrology and Water Management (H-SAF) H23 daily rainfall product. Large-scale maps of the H23 correlation metric are generated using both TC and QC analyses. Results demonstrate that the SM2RAIN product is a uniquely valuable independent product for collocation analyses, because other available large-scale rainfall datasets are often based on overlapping data sources and algorithms. In particular, the availability of SM2RAIN facilitates the large-scale evaluation of SPE products like H23—even in areas that lack adequate ground-based observations to apply traditional validation approaches.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: F. Chen, fan.chen@usda.gov
Save