• Anselin, L., 1995: Local indicators of spatial association—LISA. Geogr. Anal., 27, 93115, https://doi.org/10.1111/j.1538-4632.1995.tb00338.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ashley, W. S., M. L. Bentley, and J. A. Stallins, 2012: Urban-induced thunderstorm modification in the southeast United States. Climatic Change, 113, 481498, https://doi.org/10.1007/s10584-011-0324-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bloom, D. E., 2011: 7 billion and counting. Science, 333, 562569, https://doi.org/10.1126/science.1209290.

  • Chen, G., T. Iwasaki, H. Qin, and W. Sha, 2014: Evaluation of the warm-season diurnal variability over East Asia in recent reanalyses JRA-55, ERA-Interim, NCEP CFSR, and NASA MERRA. J. Climate, 27, 55175537, https://doi.org/10.1175/JCLI-D-14-00005.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S., and Coauthors, 2016: Precipitation spectra analysis over China with high-resolution measurements from optimally-merged satellite/gauge observations—Part I: Spatial and seasonal analysis. IEEE J. Sel. Topics Appl. Earth Obs. Remote Sens., 9, 29662978, https://doi.org/10.1109/JSTARS.2016.2529003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, A., X. Lin, and K. Hsu, 2007: The frequency, intensity, and diurnal cycle of precipitation in surface and satellite observations over low- and mid-latitudes. Climate Dyn., 29, 727744, https://doi.org/10.1007/s00382-007-0260-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deng, Y., T. Gao, H. Gao, X. Yao, and L. Xie, 2014: Regional precipitation variability in East Asia related to climate and environmental factors during 1979-2012. Sci. Rep., 4, 5693, https://doi.org/10.1038/srep05693.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drobinski, P., B. Alonzo, S. Bastin, N. D. Silva, and C. Muller, 2016: Scaling of precipitation extremes with temperature in the French Mediterranean region: What explains the hook shape? J. Geophys. Res. Atmos., 121, 31003119, https://doi.org/10.1002/2015JD023497.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feddema, J. J., K. W. Oleson, G. B. Bonan, L. O. Mearns, L. E. Buja, G. A. Meehl, and W. M. Washington, 2005: The importance of land-cover change in simulating future climates. Science, 310, 16741678, https://doi.org/10.1126/science.1118160.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, X., X. Yang, and X. Sun, 2019: Spatial and diurnal variations of summer hourly rainfall over three super city clusters in Eastern China and their possible link to the urbanization. J. Geophys. Res. Atmos., 124, 54455462, https://doi.org/10.1029/2019JD030474.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Georgescu, M., A. Mahalov, and M. Moustaoui, 2012: Seasonal hydroclimatic impacts of Sun Corridor expansion. Environ. Res. Lett., 7, 034026, https://doi.org/10.1088/1748-9326/7/3/034026.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ghosh, S., D. Das, S. C. Kao, and A. R. Ganguly, 2012: Lack of uniform trends but increasing spatial variability in observed Indian rainfall extremes. Nat. Climate Change, 2, 8691, https://doi.org/10.1038/nclimate1327.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gu, X., Q. Zhang, J. Li, V. P. Singh, and P. Sun, 2019: Impact of urbanization on nonstationarity of annual and seasonal precipitation extremes in China. J. Hydrol., 575, 638655, https://doi.org/10.1016/j.jhydrol.2019.05.070.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guo, C., H. Xiao, H. Yang, and W. Wen, 2019: Effects of anthropogenic aerosols on a heavy rainstorm in Beijing. Atmosphere, 10, 162, https://doi.org/10.3390/atmos10040162.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guo, X., D. Fu, and J. Wang, 2006: Mesoscale convective precipitation system modified by urbanization in Beijing City. Atmos. Res., 82, 112126, https://doi.org/10.1016/j.atmosres.2005.12.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, J. Y., J. J. Baik, and H. Lee, 2014: Urban impacts on precipitation. Asia-Pac. J. Atmos. Sci., 50, 1730, https://doi.org/10.1007/s13143-014-0016-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, Y., Y. Liu, Y. Liu, H. Li, and J. C. Knievel, 2019: Mechanisms for a record-breaking rainfall in the coastal metropolitan city of Guangzhou, China: Observation analysis and nested very large eddy simulation with the WRF model. J. Geophys. Res. Atmos., 124, 13701391, https://doi.org/10.1029/2018JD029668.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huff, F. A., and S. A. Changnon Jr., 1973: Precipitation modification by major urban areas. Bull. Amer. Meteor. Soc., 54, 12201232, https://doi.org/10.1175/1520-0477(1973)054<1220:PMBMUA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joyce, R. J., J. E. Janowiak, P. A. Arkin, and P. P. Xie, 2004: CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeor., 5, 487503, https://doi.org/10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaufmann, R. K., K. C. Seto, A. Schneider, Z. Liu, L. Zhou, and W. Wang, 2007: Climate response to rapid urban growth: Evidence of a human-induced precipitation deficit. J. Climate, 20, 22992306, https://doi.org/10.1175/JCLI4109.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kobayashi, S., and Coauthors, 2015: The JRA-55 reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 548, https://doi.org/10.2151/jmsj.2015-001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, W., S. Cheng, G. Chen, W. Sha, C. Luo, Y. Feng, Z. Wen, and B. Wang, 2011: Urbanization signatures in strong versus weak precipitation over the Pearl River Delta metropolitan regions of China. Environ. Res. Lett., 6, 034020, https://doi.org/10.1088/1748-9326/6/3/034020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, C., T. Wang, P. Chen, M. Li, M. Zhao, K. Zhao, M. H. Wang, and X. Q. Yang, 2019: Effects of aerosols on the precipitation of convective clouds: A case study in the Yangtze River Delta of China. J. Geophys. Res. Atmos., 124, 78687885, https://doi.org/10.1029/2018JD029924.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, J., M. Liu, H. Tian, D. Zhuang, Z. Zhang, W. Zhang, X. Tang, and X. Deng, 2005: Spatial and temporal patterns of China’s cropland during 1990–2000: An analysis based on Landsat TM data. Remote Sens. Environ., 98, 442456, https://doi.org/10.1016/j.rse.2005.08.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, M., and N. Lau, 2018: Increasing heat stress in urban areas of Eastern China: Acceleration by urbanization. Geophys. Res. Lett., 45, 13 06013 069, https://doi.org/10.1029/2018GL080306.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miao, C., Q. Sun, A. G. Borthwick, and Q. Duan, 2016: Linkage between hourly precipitation events and atmospheric temperature changes over China during the warm season. Sci. Rep., 6, 22543, https://doi.org/10.1038/srep22543.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miao, S., F. Chen, Q. Li, and S. Fan, 2011: Impacts of urban processes and urbanization on summer precipitation: A case study of heavy rainfall in Beijing on 1 August 2006. J. Appl. Meteor. Climatol., 50, 806825, https://doi.org/10.1175/2010JAMC2513.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moran, P. A. P., 1950: Notes on continuous stochastic phenomena. Biometrika, 37, 1723, https://doi.org/10.1093/biomet/37.1-2.17.

  • Mote, T. L., M. C. Lacke, and J. M. Shepherd, 2007: Radar signatures of the urban effect on precipitation distribution: A case study for Atlanta, Georgia. Geophys. Res. Lett., 34, L20710, https://doi.org/10.1029/2007GL031903.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niyogi, D., P. Pyle, M. Lei, S. P. Arya, C. M. Kishtawal, M. Shepherd, F. Chen, and B. Wolfe, 2011: Urban modification of thunderstorms: An observational storm climatology and model case study for the Indianapolis urban region. J. Appl. Meteor. Climatol., 50, 11291144, https://doi.org/10.1175/2010JAMC1836.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pielke, R. A., and Coauthors, 2011: Land use/land cover changes and climate: Modeling analysis and observational evidence. Wiley Interdiscip. Rev.: Climate Change, 2, 828850, https://doi.org/10.1002/wcc.144.

    • Search Google Scholar
    • Export Citation
  • Prat, O. P., and B. R. Nelson, 2013: Mapping the world’s tropical cyclone rainfall contribution over land using the TRMM Multi-satellite Precipitation Analysis. Water Resour. Res., 49, 72367254, https://doi.org/10.1002/wrcr.20527.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ren, G., 2015: Urbanization as a major driver of urban climate change. Adv. Climate Change Res., 6, 16, https://doi.org/10.1016/j.accre.2015.08.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Renard, F., 2017: Local influence of south-east France topography and land cover on the distribution and characteristics of intense rainfall cells. Theor. Appl. Climatol., 128, 393405, https://doi.org/10.1007/s00704-015-1698-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., U. Lohmann, G. B. Raga, C. D. Odowd, M. Kulmala, S. Fuzzi, A. Reissell, and M. O. Andreae, 2008: Flood or drought: How do aerosols affect precipitation? Science, 321, 13091313, https://doi.org/10.1126/science.1160606.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmid, P. E., and D. Niyogi, 2013: Impact of city size on precipitation-modifying potential. Geophys. Res. Lett., 40, 52635267, https://doi.org/10.1002/grl.50656.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shastri, H., S. Paul, S. Ghosh, and S. Karmakar, 2015: Impacts of urbanization on Indian summer monsoon rainfall extremes. J. Geophys. Res. Atmos., 120, 496516, https://doi.org/10.1002/2014JD022061.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shastri, H., S. Ghosh, and S. Karmakar, 2017: Improving Global Forecast System of extreme precipitation events with regional statistical model: Application of quantile-based probabilistic forecasts. J. Geophys. Res. Atmos., 122, 16171634, https://doi.org/10.1002/2016JD025489.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shen, Y., P. Zhao, Y. Pan, and J. Yu, 2014: A high spatiotemporal gauge-satellite merged precipitation analysis over China. J. Geophys. Res. Atmos., 119, 30633075, https://doi.org/10.1002/2013JD020686.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shepherd, J. M., M. Carter, M. Manyin, D. Messen, and S. Burian, 2010: The impact of urbanization on current and future coastal precipitation: A case study for Houston. Environ. Plann., 37B, 284304, https://doi.org/10.1068/b34102t.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shi, C. X., Z. H. Xie, H. Qian, M. L. Liang, and X. C. Yang, 2011: China land soil moisture EnKF data assimilation based on satellite remote sensing data. Sci. China Earth Sci., 54, 14301440, https://doi.org/10.1007/s11430-010-4160-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Singh, J., H. Vittal, S. Karmakar, S. Ghosh, and D. Niyogi, 2016: Urbanization causes nonstationarity in Indian summer monsoon rainfall extremes. Geophys. Res. Lett., 43, 11 26911 277, https://doi.org/10.1002/2016GL071238.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Su, L., J. Li, X. Shi, and J. C. Fung, 2019: Spatiotemporal variation in presummer precipitation over south China from 1979 to 2015 and its relationship with urbanization. J. Geophys. Res. Atmos., 124, 67376749, https://doi.org/10.1029/2019JD030751.

    • Search Google Scholar
    • Export Citation
  • Sun, Q., C. Miao, and Q. Duan, 2017: Changes in the spatial heterogeneity and annual distribution of observed precipitation across China. J. Climate, 30, 93999416, https://doi.org/10.1175/JCLI-D-17-0045.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, G., D. Long, and Y. Hong, 2016: Systematic anomalies over inland water bodies of high mountain Asia in TRMM precipitation estimates: No longer a problem for the GPM era? IEEE Geosci. Remote Sens., 13, 17621766, https://doi.org/10.1109/LGRS.2016.2606769.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., A. Dai, R. M. Rasmussen, and D. B. Parsons, 2003: The changing character of precipitation. Bull. Amer. Meteor. Soc., 84, 12051218, https://doi.org/10.1175/BAMS-84-9-1205.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wan, H., Z. Zhong, X. Yang, and X. Li, 2013: Impact of city belt in Yangtze River Delta in China on a precipitation process in summer: A case study. Atmos. Res., 125–126, 6375, https://doi.org/10.1016/j.atmosres.2013.02.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, D. S., D. G. Wang, X. Qi, L. Liu, and X. W. Wang, 2018: Use of high-resolution precipitation observations in quantifying the effect of urban extent on precipitation characteristics for different climate conditions over the Pearl River Delta, China. Atmos. Sci. Lett., 19, e820, https://doi.org/10.1002/asl.820.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, D. S., X. W. Wang, L. Liu, D. G. Wang, H. B. Huang, and C. L. Pan, 2019: Evaluation of TMPA 3B42V7, GPM IMERG and CMPA precipitation estimates in Guangdong Province, China. Int. J. Climatol., 39, 738755, https://doi.org/10.1002/joc.5839.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, J., J. Feng, Z. Yan, Y. Hu, and G. Jia, 2012: Nested high-resolution modeling of the impact of urbanization on regional climate in three vast urban agglomerations in China. J. Geophys. Res., 117, D21103, https://doi.org/10.1029/2012JD018226.

    • Search Google Scholar
    • Export Citation
  • Wang, J., J. Feng, and Z. Yan, 2015: Potential sensitivity of warm season precipitation to urbanization extents: Modeling study in Beijing-Tianjin-Hebei urban agglomeration in China. J. Geophys. Res. Atmos., 120, 94089425, https://doi.org/10.1002/2015JD023572.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xing, Y., G. Ni, L. Yang, Y. Yang, P. Xing, and T. Sun, 2019: Modeling the impacts of urbanization and open water surface on heavy convective rainfall: A case study over the emerging Xiong’an City, China. J. Geophys. Res. Atmos., 124, 90789098, https://doi.org/10.1029/2019JD030359.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, L., F. Tian, J. A. Smith, and H. Hu, 2014: Urban signatures in the spatial clustering of summer heavy rainfall events over the Beijing metropolitan region. J. Geophys. Res. Atmos., 119, 12031217, https://doi.org/10.1002/2013JD020762.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, L., J. A. Smith, and D. Niyogi, 2019: Urban impacts on extreme monsoon rainfall and flooding in complex terrain. Geophys. Res. Lett., 46, 59185927, https://doi.org/10.1029/2019GL083363.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, M., and Y. Liu, 2015: The possible impact of urbanization on a heavy rainfall event in Beijing. J. Geophys. Res. Atmos., 120, 81328143, https://doi.org/10.1002/2015JD023336.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhai, P., X. Zhang, H. Wan, and X. Pan, 2005: Trends in total precipitation and frequency of daily precipitation extremes over China. J. Climate, 18, 10961108, https://doi.org/10.1175/JCLI-3318.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, C. L., F. Chen, S. G. Miao, Q. C. Li, X. A. Xia, and C. Y. Xuan, 2009: Impacts of urban expansion and future green planting on summer precipitation in the Beijing metropolitan area. J. Geophys. Res., 114, D02116, https://doi.org/10.1029/2008JD010328.

    • Search Google Scholar
    • Export Citation
  • Zhang, D. L., Y. Lin, P. Zhao, X. Yu, S. Wang, H. Kang, and Y. Ding, 2013: The Beijing extreme rainfall of 21 July 2012: “Right results” but for wrong reasons. Geophys. Res. Lett., 40, 14261431, https://doi.org/10.1002/grl.50304.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, X., L. Alexander, G. C. Hegerl, P. Jones, A. K. Tank, T. C. Peterson, B. Trewin, and F. W. Zwiers, 2011: Indices for monitoring changes in extremes based on daily temperature and precipitation data. Wiley Interdiscip. Rev.: Climate Change, 2, 851870, https://doi.org/10.1002/wcc.147.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., J. A. Smith, L. Luo, Z. Wang, and M. L. Baeck, 2014: Urbanization and rainfall variability in the Beijing metropolitan region. J. Hydrometeor., 15, 22192235, https://doi.org/10.1175/JHM-D-13-0180.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y. C., X. Wang, L. Zhang, and J. Shu, 2017: Numerical simulation of the impacts of the sea-breeze and the urban heat island on the severe convective event in Shanghai (in Chinese). Plateau Meteor., 36, 705717.

    • Search Google Scholar
    • Export Citation
  • Zhong, S., and X. Yang, 2015: Ensemble simulations of the urban effect on a summer rainfall event in the Great Beijing Metropolitan Area. Atmos. Res., 153, 318334, https://doi.org/10.1016/j.atmosres.2014.09.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhong, S., Y. Qian, C. Zhao, R. Leung, and X. Q. Yang, 2015: A case study of urbanization impact on summer precipitation in the Greater Beijing Metropolitan Area: Urban heat island versus aerosol effects. J. Geophys. Res. Atmos., 120, 10 90310 914, https://doi.org/10.1002/2015JD023753.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhong, S., and Coauthors, 2017: Urbanization-induced urban heat island and aerosol effects on climate extremes in the Yangtze River Delta region of China. Atmos. Chem. Phys., 17, 54395457, https://doi.org/10.5194/acp-17-5439-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, Z., J. A. Smith, D. B. Wright, M. L. Baeck, L. Yang, and S. Liu, 2019: Storm catalog-based analysis of rainfall heterogeneity and frequency in a complex terrain. Water Resour. Res., 55, 18711889, https://doi.org/10.1029/2018WR023567.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 99 99 81
Full Text Views 22 22 18
PDF Downloads 28 28 24

Urban Signatures in the Spatial Clustering of Precipitation Extremes over Mainland China

View More View Less
  • 1 School of Geography and Planning, Sun Yat-sen University, Guangzhou, China
  • 2 School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China
  • 3 School of Geography and Remote Sensing, Guangzhou University, Guangzhou, China
  • 4 Department of Geography, University of Cincinnati, Cincinnati, Ohio
© Get Permissions
Restricted access

Abstract

Urban areas demonstrate great influence on precipitation, yet the spatial clustering features of precipitation are still unclear over urban areas. This study quantitatively examines the spatial clustering of precipitation intensity in 130 urban-affected regions over mainland China during 2008–15 using a high-resolution merged precipitation product. Results show that the spatial heterogeneity patterns display diverse distribution and vary with precipitation intensity and urban sizes. Extreme and heavy precipitation has higher spatial heterogeneity than light precipitation over the urban-affected regions of grade 1 cities, and their mean Moran’s I are 0.49, 0.47, and 0.37 for the intensity percentiles of ≥95%, 75%–95%, and <75%, respectively. The urban signatures in the spatial clustering of precipitation extremes are observed in 37 cities (28%), mainly occurring in the Haihe River basin, the Yangtze River basin, and the Pearl River basin. The spatial clustering patterns of precipitation extremes are affected by the local dominant synoptic conditions, such as the heavy storms of convective precipitation in Beijing (Moran’s I = 0.47) and the cold frontal system in the Pearl River delta (Moran’s I = 0.78), resulting in large regional variability. The role of urban environments for the spatial clustering is more evident in wetter conditions [e.g., relative humidity (RH) > 75% over Beijing and RH > 85% over the Pearl River delta] and warmer conditions (T > 25°C over Beijing and T > 28°C over the Pearl River delta). This study highlights the urban modification on the spatial clustering of some precipitation extremes, and calls for precautions and adaptation strategies to mitigate the adverse effect of the highly clustered extreme rainfall events.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JHM-D-20-0063.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xianwei Wang, wangxw8@mail.sysu.edu.cn

Abstract

Urban areas demonstrate great influence on precipitation, yet the spatial clustering features of precipitation are still unclear over urban areas. This study quantitatively examines the spatial clustering of precipitation intensity in 130 urban-affected regions over mainland China during 2008–15 using a high-resolution merged precipitation product. Results show that the spatial heterogeneity patterns display diverse distribution and vary with precipitation intensity and urban sizes. Extreme and heavy precipitation has higher spatial heterogeneity than light precipitation over the urban-affected regions of grade 1 cities, and their mean Moran’s I are 0.49, 0.47, and 0.37 for the intensity percentiles of ≥95%, 75%–95%, and <75%, respectively. The urban signatures in the spatial clustering of precipitation extremes are observed in 37 cities (28%), mainly occurring in the Haihe River basin, the Yangtze River basin, and the Pearl River basin. The spatial clustering patterns of precipitation extremes are affected by the local dominant synoptic conditions, such as the heavy storms of convective precipitation in Beijing (Moran’s I = 0.47) and the cold frontal system in the Pearl River delta (Moran’s I = 0.78), resulting in large regional variability. The role of urban environments for the spatial clustering is more evident in wetter conditions [e.g., relative humidity (RH) > 75% over Beijing and RH > 85% over the Pearl River delta] and warmer conditions (T > 25°C over Beijing and T > 28°C over the Pearl River delta). This study highlights the urban modification on the spatial clustering of some precipitation extremes, and calls for precautions and adaptation strategies to mitigate the adverse effect of the highly clustered extreme rainfall events.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JHM-D-20-0063.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xianwei Wang, wangxw8@mail.sysu.edu.cn

Supplementary Materials

    • Supplemental Materials (PDF 1.51 MB)
Save