• Behrouz, M. S., Z. Zhu, L. S. Matott, and A. Rabideau, 2020: A new tool for automatic calibration of The Storm Water Management Model (SWMM). J. Hydrol., 581, 124436, https://doi.org/10.1016/j.jhydrol.2019.124436.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., and A. G. Barr, 1996: First International Satellite Land Surface Climatology Field Experiment 1987 sonde budget revisited. J. Geophys. Res., 101, 23 28523 288, https://doi.org/10.1029/96JD02247.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chou, M.-D., and M. J. Suarez, 1999: A solar radiation parameterization for atmospheric studies. NASA Tech. Rep. NASA/TM-1999-10460, Vol. 15, 38 pp., https://ntrs.nasa.gov/api/citations/19990060930/downloads/19990060930.pdf.

  • Cleugh, H. A., M. R. Raupach, P. R. Briggs, and P. A. Coppin, 2004: Regional-scale heat and water vapour fluxes in an agricultural landscape: An evaluation of CBL budget methods at OASIS. Bound.-Layer Meteor., 110, 99137, https://doi.org/10.1023/A:1026096711297.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crow, W. T., and et al. , 2020: Soil moisture/evapotranspiration over-coupling and L-band brightness temperature assimilation: sources and forecast implications. J. Hydrometeor., 21, 23592374, https://doi.org/10.1175/JHM-D-20-0088.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, Y., and et al. , 2019: A global high-resolution data set of soil hydraulic and thermal properties for land surface modeling. J. Adv. Model. Earth Syst., 11, 29963023, https://doi.org/10.1029/2019MS001784.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • De Lannoy, G. J., R. D. Koster, R. H. Reichle, S. P. Mahanama, and Q. Liu, 2014: An updated treatment of soil texture and associated hydraulic properties in a global land modeling system. J. Adv. Model. Earth Syst., 6, 957979, https://doi.org/10.1002/2014MS000330.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Rosnay, P., M. Drusch, D. Vasiljevic, G. Balsamo, C. Albergel, and L. Isaksen, 2013: A simplified Extended Kalman Filter for the global operational soil moisture analysis at ECMWF. Quart. J. Roy. Meteor. Soc., 139, 11991213, https://doi.org/10.1002/qj.2023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Denissen, J. M. C., R. Orth, H. Wouters, D. G. Miralles, C. C. van Heerwaarden, J. Vila-Guerau de Arellano, and A. J. Teuling, 2021: Soil moisture signature in global weather balloon soundings. npj Climate Atmos. Sci., 4, 13, https://doi.org/10.1038/s41612-021-00167-w.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., 2011: The terrestrial segment of soil moisture–climate coupling. Geophys. Res. Lett., 38, L16702, https://doi.org/10.1029/2011GL048268.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., Z. Wang, M. J. Mbuh, and H. E. Norton, 2014: Intensified land surface control on boundary layer growth in a changing climate. Geophys. Res. Lett., 41, 12901294, https://doi.org/10.1002/2013GL058826.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., C. Peters-Lidard, and G. Balsamo, 2015: Land–atmosphere interactions and the water cycle. Seamless Prediction of the Earth System: From Minutes to Months, G. Brunet, S. Jones, and P.M. Ruti, Eds., WMO-1156, World Meteorological Organization, 145–154, https://epic.awi.de/id/eprint/38291/1/WMO_Book_WWOSC.pdf.

  • Drusch, M. K., and R. Viterbo, 2007: Assimilation of screen-level variables in ECMWF’s integrated system: A study on the impact of the forecast quality and analyzed soil moisture. Mon. Wea. Rev., 135, 300314, https://doi.org/10.1175/MWR3309.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drusch, M. K., K. Scipal, P. de Rosnay, G. Balsamo, E. Andersson, P. Bougeault, and P. Viterbo, 2009: Towards a Kalman filter based soil moisture analysis system for the operational ECMWF Integrated Forecast System. Geophys. Res. Lett., 36, L10401, https://doi.org/10.1029/2009GL037716.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ek, M. B., K. E. Mitchell, Y. Lin, E. Rogers, P. Grunmann, V. Koren, G. Gayno, and J. D. Tarpley, 2003: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res., 108, 8851, https://doi.org/10.1029/2002JD003296.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ek, M. B., Y. Xia, J. Meng, R. Shresha, H. Wei, J. Dong, Y. Wu, and W. Zheng, 2016: Land prediction in NCEP modeling systems: Current status and future plans (NGGPS Land Team). Next Generation Global Prediction System (NGGPS) Meeting, College Park, MD, NOAA, 29 pp., https://www.weather.gov/media/sti/nggps/10_Ek%20EMC-land-NGGPS-Feb2016.pdf.

  • Entekhabi, D., and et al. , 1999: An agenda for land-surface hydrology research and a call for the second International Hydrological Decade. Bull. Amer. Meteor. Soc., 80, 20432058, https://doi.org/10.1175/1520-0477(1999)080<2043:AAFLSH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Entekhabi, D., and et al. , 2014: SMAP Handbook: Mapping Soil Moisture Freeze/Thaw from Space, NASA, 182 pp. https://smap.jpl.nasa.gov/system/internal_resources/details/original/178_SMAP_Handbook_FINAL_1_JULY_2014_Web.pdf.

  • Feddes, R. A., M. Menenti, P. Kabat, and W. G. M. Bastiaanssen, 1993: Is large-scale inverse modeling of unsaturated flow with areal average evaporation and surface soil moisture as estimated from remote-sensing feasible. J. Hydrol., 143, 125152, https://doi.org/10.1016/0022-1694(93)90092-N.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferguson, C.R., J. A. Santanello, and P. Gentine, 2016: Enhanced soundings for local coupling studies: 2015 ARM Climate Research Facility field campaign. DOE Rep., DOE/SC-ARM-15-035, 15 pp., https://www.osti.gov/servlets/purl/1232666.

  • Findell, K. L., and E. A. B. Eltahir, 1997: An analysis of the soil moisture-rainfall feedback, based on direct observations from Illinois. Water Resour. Res., 33, 725735, https://doi.org/10.1029/96WR03756.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gentine, P., A. Chhang, A. Rigden, and G. Salvucci, 2016: Evaporation estimates using weather station data and boundary layer theory. Geophys. Res. Lett., 43, 11 66111 670, https://doi.org/10.1002/2016GL070819.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gu, L., and et al. , 2006: Direct and indirect effects of atmospheric conditions and soil moisture on surface energy partitioning revealed by a prolonged drought at a temperate forest site. J. Geophys. Res., 111, D16102, https://doi.org/10.1029/2006JD007161.

    • Search Google Scholar
    • Export Citation
  • Gupta, H. V., L. A. Bastidas, S. Sorooshian, W. J. Shuttleworth, and Z. L. Yang, 1999: Parameter estimation of a land-surface scheme using multicriteria methods. J. Geophys. Res., 104, 19 49119 503, https://doi.org/10.1029/1999JD900154.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gutmann, E. D., and E. E. Small, 2005: The effect of soil hydraulic properties vs. soil texture in land surface models. Geophys. Res. Lett., 32, L02402, https://doi.org/10.1029/2004GL021843.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haghnegahdar, A., B. Tolson, B. Davison, F. Seglenieks, E. Klyszejko, E. D. Soulis, V. Fortin, and L. S. Matott, 2014: Calibrating environment Canada’s MESH modelling system over the Great Lakes Basin. Atmos.–Ocean, 52, 281293, https://doi.org/10.1080/07055900.2014.939131.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harrison, K. W., S. V. Kumar, C. D. Peters-Lidard, and J. A. Santanello, 2012: Quantifying the change in soil moisture modeling uncertainty from remote sensing observations using Bayesian inference techniques. Water Resour. Res., 48, W11514, https://doi.org/10.1029/2012WR012337.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hess, R., 2001: Assimilation of screen level observations by variational soil moisture analysis. Meteor. Atmos. Phys., 77, 145154, https://doi.org/10.1007/s007030170023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hirsch, A. L., and et al. , 2019: Amplification of Australian heatwaves via local land-atmosphere coupling. J. Geophys. Res., 124, 13 62513 647, https://doi.org/10.1029/2019JD030665.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hogue, T. S., L. Bastidas, H. Gupta, S. Sorooshian, K. Mitchell, and W. Emmerich, 2005: Evaluation and transferability of the Noah land surface model in semiarid environments. J. Hydrometeor., 6, 6884, https://doi.org/10.1175/JHM-402.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holland, J., 1975: Adaptation in Natural and Artificial Systems. University of Michigan Press, 232 pp.

  • Hu, Y., X. Gao, W. J. Shuttleworth, H. Gupta, J.-F. Mahfouf, and P. Viterbo, 1999: Soil- moisture nudging experiments with a single-column version of the ECMWF model. Quart. J. Roy. Meteor. Soc., 125, 18791902, https://doi.org/10.1002/qj.49712555719.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and et al. , 2004: Regions of strong coupling between soil moisture and precipitation. Science, 305, 11381140, https://doi.org/10.1126/science.1100217.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., Z. Guo, R. Yang, P. Dirmeyer, K. Mitchell, and M. J. Puma, 2009: On the nature of soil moisture in land surface models. J. Climate, 22, 43224335, https://doi.org/10.1175/2009JCLI2832.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and et al. , 2010: Contribution of land surface initialization to subseasonal forecast skill: First results from a multi-model experiment. Geophys. Res. Lett., 37, L02402, https://doi.org/10.1029/2009GL041677.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, S. V., and et al. , 2006: Land information system: An interoperable framework for high resolution land surface modeling. Environ. Modell. Software, 21, 14021415, https://doi.org/10.1016/j.envsoft.2005.07.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, S. V., R. H. Reichle, K. W. Harrison, C. D. Peters-Lidard, S. Yatheendradas, and J. A. Santanello, 2012: A comparison of methods for a priori bias correction in soil moisture data assimilation. Water Resour. Res., 48, W03515, https://doi.org/10.1029/2010WR010261.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawston, P. M., J. A. Santanello, B. F. Zaitchik, and M. Rodell, 2015: Impact of irrigation methods on land surface model spinup and initialization of WRF forecasts. J. Hydrometeor., 16, 11351154, https://doi.org/10.1175/JHM-D-14-0203.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawston, P. M., J. A. Santanello, B. Hanson, and K. Arsenault, 2020: Impacts of irrigation on summertime temperatures in the Pacific Northwest. Earth Interact., 24, 126, https://doi.org/10.1175/EI-D-19-0015.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levenberg, K., 1944: A method for the solution of certain non-linear problems in least squares. Q. Appl. Math., 2, 164168, https://doi.org/10.1090/qam/10666.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y., L. A. Bastidas, H. V. Gupta, and S. Sorooshian, 2003: Impacts of a parameterization deficiency on offline and coupled land surface model simulations. J. Hydrometeor., 4, 901914, https://doi.org/10.1175/1525-7541(2003)004<0901:IOAPDO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y., H. V. Gupta, S. Sorooshian, L. A. Bastidas, and W. J. Shuttleworth, 2004: Exploring parameter sensitivities of the land surface using a locally coupled land-atmosphere model. J. Geophys. Res., 109, D21101, https://doi.org/10.1029/2004JD004730.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y., H. V. Gupta, S. Sorooshian, L. A. Bastidas, and W. J. Shuttleworth, 2005: Constraining land surface and atmospheric parameters of a locally coupled model using observational data. J. Hydrometeor., 6, 156172, https://doi.org/10.1175/JHM407.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Macro, K., L. S. Matott, A. J. Rabideau, S. H. Ghodsi, and Z. Zhu, 2019: 2019: OSTRICH-SWMM: A new multi-objective optimization tool for green infrastructure planning with SWMM. Environ. Modell. Software, 113, 4247, https://doi.org/10.1016/j.envsoft.2018.12.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marquardt, D., 1963: An algorithm for least-squares estimation of nonlinear parameters. SIAM J. Appl. Math., 11, 431441, https://doi.org/10.1137/0111030.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matott, L. S., 2017: OSTRICH: An Optimization Software Tool, Documentation and User's Guide, Version 17.12.19, University at Buffalo Center for Computational Research, 79 pp., www.eng.buffalo.edu/~lsmatott/Ostrich/OstrichMain.html.

  • Mesinger, F., and et al. , 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87, 343360, https://doi.org/10.1175/BAMS-87-3-343.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miralles, D. G., A. J. Teuling, C. C. van Heerwaarden, and J. V.-G. de Arellano, 2014: Mega-heatwave temperatures due to combined soil desiccation and atmospheric heat accumulation. Nat. Geosci., 7, 345349, https://doi.org/10.1038/ngeo2141.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mueller, B., and et al. , 2013: Benchmark products for land evapotranspiration: LandFlux-EVAL multi-dataset synthesis. Hydrol. Earth Syst. Sci., 13, 37073720, https://doi.org/10.5194/hess-17-3707-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muñoz-Sabater, J., H. Lawrence, C. Albergel, P. Rosnay, L. Isaksen, S. Mechklenburg, Y. Kerr, and M. Drusch, 2019: Assimilation of SMOS brightness temperatures in the ECMWF Integrated Forecasting System. Quart. J. Roy. Meteor. Soc., 145, 25242548, https://doi.org/10.1002/qj.3577.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakanishi, M., and H. Niino, 2006: An improved Mellor–Yamada Level-3 model: Its numerical stability and application to a regional prediction of advection fog. Bound.-Layer Meteor., 119, 397407, https://doi.org/10.1007/s10546-005-9030-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peng, F., M. Mu, and G. Sun, 2020: Evaluations of uncertainty and sensitivity in soil moisture modeling on the Tibetan Plateau. Tellus, 72A, 116, https://doi.org/10.1080/16000870.2019.1704963.

    • Search Google Scholar
    • Export Citation
  • Peters-Lidard, C. D., and L. H. Davis, 2000: Regional flux estimation in a convective boundary layer using a conservation approach. J. Hydrometeor., 1, 170182, https://doi.org/10.1175/1525-7541(2000)001<0170:RFEIAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters-Lidard, C. D., D. M. Mocko, J. A. Santanello, M. Tischler, M. S. Moran, M. Garcia, and Y. Wu, 2008: Role of precipitation uncertainty in the estimation of hydrologic soil properties using remotely sensed soil moisture in a semiarid environment. Water Resour. Res., 44, W05S18, https://doi.org/10.1029/2007WR005884.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters-Lidard, C. D., and et al. , 2015: Integrated modeling of aerosol, cloud, precipitation and land processes at satellite resolved scales. Environ. Modell. Software, 67, 149159, https://doi.org/10.1016/j.envsoft.2015.01.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roundy, J. K., C. R. Ferguson, and E. Wood, 2013: Temporal variability of land–atmosphere coupling and its implications for drought over the Southeast United States. J. Hydrometeor., 14, 622635, https://doi.org/10.1175/JHM-D-12-090.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salvucci, G. D., and P. Gentine, 2013: Emergent relation between surface vapor conductance and relative humidity profiles yields evaporation rates from weather data. Proc. Natl. Acad. Sci. USA, 110, 62876291, https://doi.org/10.1073/pnas.1215844110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Santanello, J. A., Jr., M. A. Friedl, and W. Kustas, 2005: Empirical investigation of convective planetary boundary layer evolution and its relationship with the land surface. J. Appl. Meteor., 44, 917932, https://doi.org/10.1175/JAM2240.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Santanello, J. A., Jr., M. A. Friedl, and M. B. Ek, 2007a: Convective planetary boundary layer interactions with the land surface at diurnal time scales: Diagnostics and feedbacks. J. Hydrometeor., 8, 10821097, https://doi.org/10.1175/JHM614.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Santanello, J. A., Jr., C. D. Peters-Lidard, M. Garcia, D. Mocko, M. Tischler, M. S. Moran, and D. P. Thoma, 2007b: Using remotely-sensed estimates of soil moisture to infer soil texture and hydraulic properties across a semi-arid watershed. Remote Sens. Environ., 110, 7997, https://doi.org/10.1016/j.rse.2007.02.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Santanello, J. A., Jr., C. D. Peters-Lidard, S. V. Kumar, C. Alonge, and W. K. Tao, 2009: A modeling and observational framework for diagnosing local land–atmosphere coupling on diurnal time scales. J. Hydrometeor., 10, 577599, https://doi.org/10.1175/2009JHM1066.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Santanello, J. A., Jr., C. D. Peters-Lidard, and S. V. Kumar, 2011a: Diagnosing the sensitivity of local land–atmosphere coupling via the soil moisture–boundary layer interaction. J. Hydrometeor., 12, 766786, https://doi.org/10.1175/JHM-D-10-05014.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Santanello, J. A., Jr., and et al. , 2011b: Results from Local Land-Atmosphere Coupling (LoCo) Project. GEWEX News, Vol. 21, No. 4, International GEWEX Project Office, Silver Spring, MD, 7–9, www.gewex.org/gewex-content/files_mf/1432209597Nov2011.pdf.

  • Santanello, J. A., Jr., C. D. Peters-Lidard, A. Kennedy, and S. V. Kumar, 2013a: Diagnosing the nature of land–atmosphere coupling: A case study of dry/wet extremes in the U.S. Southern Great Plains. J. Hydrometeor., 14, 324, https://doi.org/10.1175/JHM-D-12-023.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Santanello, J. A., Jr., S. V. Kumar, C. D. Peters-Lidard, K. Harrison, and S. Zhou, 2013b: Impact of land model calibration on coupled land-atmosphere prediction. J. Hydrometeor., 14, 13731400, https://doi.org/10.1175/JHM-D-12-0127.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Santanello, J. A., Jr., and et al. , 2018: Land–atmosphere interactions: The LoCo perspective. Bull. Amer. Meteor. Soc., 99, 12531272, https://doi.org/10.1175/BAMS-D-17-0001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Santanello, J. A., Jr., P. Lawston, S. Kumar, and E. Dennis, 2019: Understanding the impacts of soil moisture initial conditions on NWP in the context of land–atmosphere coupling. J. Hydrometeor., 20, 793819, https://doi.org/10.1175/JHM-D-18-0186.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seneviratne, S. I., T. Corti, E. L. Davin, M. Hirschi, E. B. Jaeger, I. Lehner, B. Orlowsky, and A. J. Teuling, 2010: Investigating soil moisture–climate interactions in a changing climate: A review. Earth-Sci. Rev., 99, 125161, https://doi.org/10.1016/j.earscirev.2010.02.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shellito, P. J., E. E. Small, and M. H. Cosh, 2016: Calibration of Noah soil hydraulic property parameters using surface soil moisture from SMOS and basinwide in situ observations. J. Hydrometeor., 17, 22752292, https://doi.org/10.1175/JHM-D-15-0153.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shellito, P. J., and et al. , 2020: Assessing the impact of soil layer depth specification on the observability of modeled soil moisture and brightness temperature. J. Hydrometeor., 21, 20412060, https://doi.org/10.1175/JHM-D-19-0280.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, W. Wang, and J. G. Powers, 2005: A description of the Advanced Research WRF version 2. NCAR Tech. Note NCAR/TN-4681STR, 88 pp., https://doi.org/10.5065/D6DZ069T.

    • Crossref
    • Export Citation
  • Sorbjan, Z., 1995: Toward evaluation of heat fluxes in the convective boundary layer. J. Appl. Meteor., 34, 10921098, https://doi.org/10.1175/1520-0450(1995)034<1092:TEOHFI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Kluwer Academic Publishers, 670 pp.

  • Teixeira, J., and et al. , 2021: Toward a Global Planetary Boundary Layer Observing System: The NASA PBL Incubation Study Team Report. NASA PBL Incubation Study Team, 134 pp., https://science.nasa.gov/science-pink/s3fs-public/atoms/files/NASAPBLIncubationFinalReport.pdf.

  • Wang, S.-Y. S., and et al. , 2015: An intensified seasonal transition in the central U.S. that enhances summer drought. J. Geophys. Res. Atmos., 120, 88048816, https://doi.org/10.1002/2014JD023013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wulfmeyer, V., and et al. , 2020: The GEWEX Land-Atmosphere Feedback Observatory (GLAFO). GEWEX Quarterly, Vol. 30, No. 1, International GEWEX Project Office, Silver Spring, MD, 6–10, https://www.gewex.org/gewex-content/files_mf/1583952472Feb2020.pdf.

  • Yang, L., G. Sun, L. Zhi, and J. Zhao, 2018: Negative soil moisture-precipitation feedback in dry and wet regions. Sci. Rep., 8, 4026, https://doi.org/10.1038/s41598-018-22394-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 134 134 124
Full Text Views 53 53 53
PDF Downloads 59 59 59

Understanding the Impacts of Land Surface and PBL Observations on the Terrestrial and Atmospheric Legs of Land–Atmosphere Coupling

View More View Less
  • 1 a Earth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, Maryland
  • | 2 b Hydrological Sciences Laboratory, NASA GSFC, Greenbelt, Maryland
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Accurately representing land–atmosphere (LA) interactions and coupling in NWP systems remains a challenge. New observations, incorporated into models via assimilation or calibration, hold the promise of improved forecast skill, but erroneous model coupling can hinder the benefits of such activities. To better understand model representation of coupled interactions and feedbacks, this study demonstrates a novel framework for coupled calibration of the single column model (SCM) capability of the NASA Unified Weather Research and Forecasting (NU-WRF) system coupled to NASA’s Land Information System (LIS). The local land–atmosphere coupling (LoCo) process chain paradigm is used to assess the processes and connections revealed by calibration experiments. Two summer case studies in the U.S. Southern Great Plains are simulated in which LSM parameters are calibrated to diurnal observations of LoCo process chain components including 2-m temperature, 2-m humidity, surface fluxes (Bowen ratio), and PBL height. Results show a wide range of soil moisture and hydraulic parameter solutions depending on which LA variable (i.e., observation) is used for calibration, highlighting that improvement in either soil hydraulic parameters or initial soil moisture when not in tandem with the other can provide undesirable results. Overall, this work demonstrates that a process chain calibration approach can be used to assess LA connections, feedbacks, strengths, and deficiencies in coupled models, as well as quantify the potential impact of new sources of observations of land–PBL variables on coupled prediction.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Patricia Parker, patricia.m.parker@nasa.gov

Abstract

Accurately representing land–atmosphere (LA) interactions and coupling in NWP systems remains a challenge. New observations, incorporated into models via assimilation or calibration, hold the promise of improved forecast skill, but erroneous model coupling can hinder the benefits of such activities. To better understand model representation of coupled interactions and feedbacks, this study demonstrates a novel framework for coupled calibration of the single column model (SCM) capability of the NASA Unified Weather Research and Forecasting (NU-WRF) system coupled to NASA’s Land Information System (LIS). The local land–atmosphere coupling (LoCo) process chain paradigm is used to assess the processes and connections revealed by calibration experiments. Two summer case studies in the U.S. Southern Great Plains are simulated in which LSM parameters are calibrated to diurnal observations of LoCo process chain components including 2-m temperature, 2-m humidity, surface fluxes (Bowen ratio), and PBL height. Results show a wide range of soil moisture and hydraulic parameter solutions depending on which LA variable (i.e., observation) is used for calibration, highlighting that improvement in either soil hydraulic parameters or initial soil moisture when not in tandem with the other can provide undesirable results. Overall, this work demonstrates that a process chain calibration approach can be used to assess LA connections, feedbacks, strengths, and deficiencies in coupled models, as well as quantify the potential impact of new sources of observations of land–PBL variables on coupled prediction.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Patricia Parker, patricia.m.parker@nasa.gov

Supplementary Materials

    • Supplemental Materials (PDF 819.74 KB)
Save