• Awan, N. K., H. Truhetz, and A. Gobiet, 2011: Parameterization-induced error characteristics of MM5 and WRF operated in climate mode over the alpine region: An ensemble-based analysis. J. Climate, 24, 31073123, https://doi.org/10.1175/2011JCLI3674.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bai, P., and et al. , 2016: Evaluation of streamflow simulation results of land surface models in GLDAS on the Tibetan plateau. J. Geophys. Res. Atmos., 121, 12 18012 197, https://doi.org/10.1002/2016JD025501.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baldwin, J., and G. Vecchi, 2016: Influence of the Tian Shan on arid extratropical Asia. J. Climate, 29, 57415762, https://doi.org/10.1175/JCLI-D-15-0490.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beven, J., and M. Hornberger, 1982: Assessing the effect of spatial pattern of precipitation in modeling stream flow hydrographs. J. Amer. Water Resour. Assoc., 18, 823829, https://doi.org/10.1111/j.1752-1688.1982.tb00078.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., and et al. , 2020: The role of the westerlies and orography in Asian hydroclimate since the late Oligocene. Geology, 48, 728732, https://doi.org/10.1130/G47400.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cigizoglu, H. K., and M. Bayazit, 2000: A generalized seasonal model for flow duration curve. Hydrol. Processes, 14, 10531067, https://doi.org/10.1002/(SICI)1099-1085(20000430)14:6<1053::AID-HYP996>3.0.CO;2-B.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Curio, J., and D. Scherer, 2016: Seasonality and spatial variability of dynamic precipitation controls on the Tibetan Plateau. Earth Syst. Dyn., 7, 767782, https://doi.org/10.5194/esd-7-767-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Curio, J., F. Maussion, and D. Scherer, 2015: A 12-year high-resolution climatology of atmospheric water transport over the Tibetan Plateau. Earth Syst. Dyn., 6, 109124, https://doi.org/10.5194/esd-6-109-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dahri, Z. H., and et al. , 2016: An appraisal of precipitation distribution in the high-altitude catchments of the Indus basin. Sci. Total Environ., 548–549, 289306, https://doi.org/10.1016/j.scitotenv.2016.01.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duethmann, D., and et al. , 2013: Evaluation of areal precipitation estimates based on downscaled reanalysis and station data by hydrological modelling. Hydrol. Earth Syst. Sci., 17, 24152434, https://doi.org/10.5194/hess-17-2415-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, Y., J. Xu, and D. Chen, 2015: Evaluation of WRF mesoscale climate simulations over the Tibetan Plateau during 1979–2011. J. Climate, 28, 28232841, https://doi.org/10.1175/JCLI-D-14-00300.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, Y., and et al. , 2020a: Understanding precipitation recycling over the Tibetan Plateau using tracer analysis with WRF. Climate Dyn., 55, 29212937, https://doi.org/10.1007/s00382-020-05426-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, Y., F. Chen, and Y. Jiang, 2020b: Evaluation of a convection-permitting modeling of precipitation over the Tibetan Plateau and its influences on the simulation of snow-cover fraction. J. Hydrometeor. 21, 15311548, https://doi.org/10.1175/JHM-D-19-0277.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, Y. C., and M. F. Liu, 2013: Evaluation of high-resolution satellite precipitation products using rain gauge observations over the Tibetan Plateau. Hydrol. Earth Syst. Sci. 17, 837849, https://doi.org/10.5194/hess-17-837-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, Z., and et al. , 2017: Intercomparisons of rainfall estimates from TRMM and GPM multisatellite products over the upper Mekong river basin. J. Hydrometeor., 18, 413430, https://doi.org/10.1175/JHM-D-16-0198.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, Z., and et al. , 2019: Constraining hydrological model parameters using water isotopic compositions in a glacierized basin, Central Asia. J. Hydrol., 571, 332348, https://doi.org/10.1016/j.jhydrol.2019.01.048.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., and M. Kanamitsu, 2014: Dynamical downscaling: Fundamental issues from an NWP point of view and recommendations. Asia-Pac. J. Atmos. Sci., 50, 83104, https://doi.org/10.1007/s13143-014-0029-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, D., and S. Gao, 2018: Impact of different reanalysis data on WRF dynamical downscaling over China. Atmos. Res., 200, 2535, https://doi.org/10.1016/j.atmosres.2017.09.017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Immerzeel, W. W., and et al. , 2015: Reconciling high-altitude precipitation in the upper Indus basin with glacier mass balances and runoff. Hydrol. Earth Syst. Sci., 19, 46734687, https://doi.org/10.5194/hess-19-4673-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kan, B., and et al. , 2018: Generation of high mountain precipitation and temperature data for a quantitative assessment of flow regime in the upper Yarkant Basin in the Karakoram. J. Geophys. Res. Atmos., 123, 84628486, https://doi.org/10.1029/2017JD028055.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khromova, T. E., and et al. , 2006: Changes in glacier extent in the Eastern Pamir, Central Asia, determined from historical data and ASTER imagery. Remote Sens. Environ., 102, 2432, https://doi.org/10.1016/j.rse.2006.01.019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laprise, R., 2008: Regional climate modelling. J. Comput. Phys., 227, 36413666, https://doi.org/10.1016/j.jcp.2006.10.024.

  • Li, L., and et al. , 2017: Evaluating the present annual water budget of a Himalayan headwater river basin using a high-resolution atmosphere-hydrology model. J. Geophys. Res. Atmos., 122, 47864807, https://doi.org/10.1002/2016JD026279.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y., and et al. , 2019: High-resolution regional climate modeling and projection over Western Canada using a weather research forecasting model with a pseudo-global warming approach. Hydrol. Earth Syst. Sci., 23, 46354659, https://doi.org/10.5194/hess-23-4635-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Z., D. Yang, and Y. Hong, 2013: Multi-scale evaluation of high-resolution multi-sensor blended global precipitation products over the Yangtze River. J. Hydrol., 500, 157169, https://doi.org/10.1016/j.jhydrol.2013.07.023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liang, X., and et al. , 1994: A simple hydrologically based model of land-surface water and energy fluxes. J. Geophys. Res., 99, 14 41514 428, https://doi.org/10.1029/94JD00483.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liang, X., D. P. Lettenmaier, and E. F. Wood, 1996: One-dimensional statistical dynamic representation of subgrid spatial variability of precipitation in the two-layer variable infiltration capacity model. J. Geophys. Res., 101, 21 40321 422, https://doi.org/10.1029/96JD01448.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, C., and et al. , 2018: Impact of model resolution on simulating the water vapor transport through the central Himalayas: Implication for models’ wet bias over the Tibetan Plateau. Climate Dyn., 51, 31953207, https://doi.org/10.1007/s00382-018-4074-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lutz, A. F., and et al. , 2014: Consistent increase in High Asia’s runoff due to increasing glacier melt and precipitation. Nat. Climate Change, 4, 587592, https://doi.org/10.1038/nclimate2237.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lutz, A. F., and et al. , 2016: Climate change impacts on the upper Indus hydrology: Sources, shifts and extremes. PLOS ONE, 11, e0165630, https://doi.org/10.1371/journal.pone.0165630.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, Y., and et al. , 2015: Precipitation bias variability versus various gauges under different climatic conditions over the Third Pole Environment (TPE) region. Int. J. Climatol., 35, 12011211, https://doi.org/10.1002/joc.4045.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, Y., and et al. , 2016: Similarity and error intercomparison of the GPM and its predecessor-TRMM multisatellite precipitation analysis using the best available hourly gauge network over the Tibetan Plateau. Remote Sens., 8, 569, https://doi.org/10.3390/rs8070569.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, Y., and et al. , 2018: Atmospheric moisture transport versus precipitation across the Tibetan Plateau: A mini-review and current challenges. Atmos. Res., 209, 5058, https://doi.org/10.1016/j.atmosres.2018.03.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maussion, F., and et al. , 2011: WRF simulation of a precipitation event over the Tibetan Plateau, China - An assessment using remote sensing and ground observations. Hydrol. Earth Syst. Sci., 15, 17951817, https://doi.org/10.5194/hess-15-1795-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maussion, F., and et al. , 2014: Precipitation seasonality and variability over the Tibetan Plateau as resolved by the High Asia Reanalysis. J. Climate, 27, 19101927, https://doi.org/10.1175/JCLI-D-13-00282.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meng, F., and et al. , 2019: Changes in terrestrial water storage during 2003–2014 and possible causes in Tibetan Plateau. J. Geophys. Res. Atmos., 124, 29092931, https://doi.org/10.1029/2018JD029552.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mölg, T., and et al. , 2012: The footprint of Asian monsoon dynamics in the mass and energy balance of a Tibetan glacier. Cryosphere, 6, 14451461, https://doi.org/10.5194/tc-6-1445-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mölg, T., F. Maussion, and D. Scherer, 2013: Mid-latitude westerlies as a driver of glacier variability in monsoonal High Asia. Nat. Climate Change, 4, 6873, https://doi.org/10.1038/nclimate2055.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Norris, J., and et al. , 2015: WRF simulations of two extreme snowfall events associated with contrasting extratropical cyclones over the western and central Himalaya. J. Geophys. Res. Atmos., 120, 31143138, https://doi.org/10.1002/2014JD022592.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ou, T., and et al. , 2020: Simulation of summer precipitation diurnal cycles over the Tibetan Plateau at the gray-zone grid spacing for cumulus parameterization. Climate Dyn., 54, 35253539, https://doi.org/10.1007/s00382-020-05181-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qi, W., J. Liu, and D. Chen, 2018: Evaluations and improvements of GLDAS2.0 and GLDAS2.1 forcing data’s applicability for basin scale hydrological simulations in the Tibetan Plateau. J. Geophys. Res. Atmos., 123, 13 12813 148, https://doi.org/10.1029/2018JD029116.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiu, J., 2008: China: The third pole. Nature, 454, 393396, https://doi.org/10.1038/454393a.

  • Shafeeque, M., and et al. , 2019: Revealing vertical distribution of precipitation in the glacierized upper Indus Basin based on multiple datasets. J. Hydrometeor., 20, 22912314, https://doi.org/10.1175/JHM-D-19-0081.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, W. Wang, and J. G. Powers, 2005: A description of the Advanced Research WRF version 2. NCAR Tech. Note NCAR/TN-468+STR, 88 pp., https://doi.org/10.5065/D6DZ069T.

    • Crossref
    • Export Citation
  • Song, H.-J., and B.-J. Sohn, 2018: An evaluation of WRF microphysics schemes for simulating the warm-type heavy rain over the Korean Peninsula. Asia-Pac. J. Atmos. Sci., 54, 225236, https://doi.org/10.1007/s13143-018-0006-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Su, F., Y. Hong, and D. P. Lettenmaier, 2008: Evaluation of TRMM Multisatellite Precipitation Analysis (TMPA) and its utility in hydrologic prediction in the La Plata Basin. J. Hydrometeor., 9, 622640, https://doi.org/10.1175/2007JHM944.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Su, F., and et al. , 2013: Evaluation of the global climate models in the CMIP5 over the Tibetan Plateau. J. Climate, 26, 31873208, https://doi.org/10.1175/JCLI-D-12-00321.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Su, F., and et al. , 2016: Hydrological response to future climate changes for the major upstream river basins in the Tibetan Plateau. Global Planet. Change, 136, 8295, https://doi.org/10.1016/j.gloplacha.2015.10.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, H., and F. Su, 2020: Precipitation correction and reconstruction for streamflow simulation based on 262 rain gauges in the upper Brahmaputra of southern Tibetan Plateau. J. Hydrol., 590, 125484, https://doi.org/10.1016/j.jhydrol.2020.125484.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, X., and et al. , 2016: An evaluation of dynamical downscaling of Central Plains summer precipitation using a WRF-based regional climate model at a convection-permitting 4 km resolution. J. Geophys. Res. Atmos., 121, 13 80113 825, https://doi.org/10.1002/2016JD024796.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tan, M., and et al. , 2015: Evaluation of six high-resolution satellite and ground-based precipitation products over Malaysia. Remote Sens., 7, 15041528, https://doi.org/10.3390/rs70201504.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, G., and et al. , 2018: Accounting for spatiotemporal errors of gauges: A critical step to evaluate gridded precipitation products. J. Hydrol., 559, 294306, https://doi.org/10.1016/j.jhydrol.2018.02.057.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, G., and et al. , 2020: Have satellite precipitation products improved over last two decades? A comprehensive comparison of GPM IMERG with nine satellite and reanalysis datasets. Remote Sens. Environ., 240, 111697, https://doi.org/10.1016/j.rse.2020.111697.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tian, F., and et al. , 2018: How does the evaluation of the GPM IMERG rainfall product depend on gauge density and rainfall intensity? J. Hydrometeor., 19, 339349, https://doi.org/10.1175/JHM-D-17-0161.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tian, Y., and et al. , 2009: Component analysis of errors in satellite-based precipitation estimates. J. Geophys. Res., 114, D24101, https://doi.org/10.1029/2009JD011949.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tong, K., and et al. , 2014a: Evaluation of satellite precipitation retrievals and their potential utilities in hydrologic modeling over the Tibetan Plateau. J. Hydrol., 519, 423437, https://doi.org/10.1016/j.jhydrol.2014.07.044.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tong, K., and et al. , 2014b: Tibetan Plateau precipitation as depicted by gauge observations, reanalyses and satellite retrievals. Int. J. Climatol., 34, 265285, https://doi.org/10.1002/joc.3682.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, A., and X. Zeng, 2012: Evaluation of multireanalysis products with in situ observations over the Tibetan Plateau. J. Geophys. Res., 117, D05102, https://doi.org/10.1029/2011JD016553.

    • Search Google Scholar
    • Export Citation
  • Wang, X., and et al. , 2020: WRF-based dynamical downscaling of ERA5 reanalysis data for High Mountain Asia: Towards a new version of the High Asia refined analysis. Int. J. Climatol., 41, 743762, https://doi.org/10.1002/joc.6686.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., and et al. , 2020: Synergy of orographic drag parameterization and high resolution greatly reduces biases of WRF-simulated precipitation in central Himalaya. Climate Dyn., 54, 17291740, https://doi.org/10.1007/s00382-019-05080-w.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wortmann, M., and et al. , 2018: Comparison and correction of high-mountain precipitation data based on glacio-hydrological modeling in the Tarim River headwaters (High Asia). J. Hydrometeor., 19, 777801, https://doi.org/10.1175/JHM-D-17-0106.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, Y., Y. Li, and X. Jiang, 2015: Influence of two planetary boundary layer parameterization schemes on summer rain in 2013 on Tibetan Plateau by WRF model. Plateau Mountain Meteor. Res., 33, 716.

    • Search Google Scholar
    • Export Citation
  • Xu, L., and et al. , 2019: The assessment of the planetary boundary layer schemes in WRF over the central Tibetan Plateau. Atmos. Res., 230, 104644, https://doi.org/10.1016/j.atmosres.2019.104644.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, R., and et al. , 2017: Ground validation of GPM IMERG and TRMM 3B42V7 rainfall products over southern Tibetan Plateau based on a high-density rain gauge network. J. Geophys. Res. Atmos., 122, 910924, https://doi.org/10.1002/2016JD025418.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, D., and et al. , 2005: Bias corrections of long-term (1973–2004) daily precipitation data over the northern regions. Geophys. Res. Lett., 32, L19501, https://doi.org/10.1029/2005GL024057.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yatagai, K., K. Kamiguchi, O. Arakawa, A. Hamada, N. Yasutomi, and A. Kitoh, 2012: APHRODITE: Constructing a long-term daily gridded precipitation dataset for Asia based on a dense network of rain gauges. Bull. Amer. Meteor. Soc., 93, 14011415, https://doi.org/10.1175/BAMS-D-11-00122.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • You, Q., and et al. , 2015: Comparison of multiple datasets with gridded precipitation observations over the Tibetan Plateau. Climate Dyn., 45, 791806, https://doi.org/10.1007/s00382-014-2310-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, E., 2013: High-resolution seasonal snowfall simulation over Northeast China. Chin. Sci. Bull., 58, 14121419, https://doi.org/10.1007/s11434-012-5561-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, L., and et al. , 2013: Discharge regime and simulation for the upstream of major rivers over Tibetan Plateau. J. Geophys. Res. Atmos., 118, 85008518, https://doi.org/10.1002/jgrd.50665.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, L., and et al. , 2020: Interpolated or satellite-based precipitation? Implications for hydrological modeling in a meso-scale mountainous watershed on the Qinghai-Tibet Plateau. J. Hydrol., 583, 124629, https://doi.org/10.1016/j.jhydrol.2020.124629.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, Q., and et al. , 2019: Projecting climate change impacts on hydrological processes on the Tibetan Plateau with model calibration against the Glacier Inventory Data and observed streamflow. J. Hydrol., 573, 6081, https://doi.org/10.1016/j.jhydrol.2019.03.043.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 48 48 48
Full Text Views 7 7 7
PDF Downloads 16 16 16

Hydrological Evaluation of High-Resolution Precipitation Estimates from the WRF Model in the Third Pole River Basins

View More View Less
  • 1 a Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
  • | 2 b University of Chinese Academy of Sciences, Beijing, China
  • | 3 c CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing, China
  • | 4 d Centre for Hydrology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
  • | 5 e Regional Climate Group, Department of Earth Sciences, University of Gothenburg, Gothenburg, Sweden
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

In this study, two sets of precipitation estimates that are based on the regional Weather Research and Forecasting (WRF) Model—the high Asia refined analysis (HAR) and outputs with a 9-km resolution from WRF (WRF-9km)—are evaluated at both basin and point scales, and their potential hydrological utilities are investigated by driving the Variable Infiltration Capacity (VIC) large-scale land surface hydrological model in seven Third Pole (TP) basins. The regional climate model (RCM) tends to overestimate the gauge-based estimates by 20%–95% in annual means among the selected basins. Relative to the gauge observations, the RCM precipitation estimates can accurately detect daily precipitation events of varying intensities (with absolute bias < 3 mm). The WRF-9km exhibits a high potential for hydrological application in the monsoon-dominated basins in the southeastern TP (with NSE of 0.7–0.9 and bias from −11% to 3%), whereas the HAR performs well in the upper Indus and upper Brahmaputra basins (with NSE of 0.6 and bias from −15% to −9%). Both of the RCM precipitation estimates can accurately capture the magnitudes of low and moderate daily streamflow but show limited capabilities in flood prediction in most of the TP basins. This study provides a comprehensive evaluation of the strength and limitation of RCMs precipitation in hydrological modeling in the TP with complex terrains and sparse gauge observations.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Fengge Su, fgsu@itpcas.ac.cn

Abstract

In this study, two sets of precipitation estimates that are based on the regional Weather Research and Forecasting (WRF) Model—the high Asia refined analysis (HAR) and outputs with a 9-km resolution from WRF (WRF-9km)—are evaluated at both basin and point scales, and their potential hydrological utilities are investigated by driving the Variable Infiltration Capacity (VIC) large-scale land surface hydrological model in seven Third Pole (TP) basins. The regional climate model (RCM) tends to overestimate the gauge-based estimates by 20%–95% in annual means among the selected basins. Relative to the gauge observations, the RCM precipitation estimates can accurately detect daily precipitation events of varying intensities (with absolute bias < 3 mm). The WRF-9km exhibits a high potential for hydrological application in the monsoon-dominated basins in the southeastern TP (with NSE of 0.7–0.9 and bias from −11% to 3%), whereas the HAR performs well in the upper Indus and upper Brahmaputra basins (with NSE of 0.6 and bias from −15% to −9%). Both of the RCM precipitation estimates can accurately capture the magnitudes of low and moderate daily streamflow but show limited capabilities in flood prediction in most of the TP basins. This study provides a comprehensive evaluation of the strength and limitation of RCMs precipitation in hydrological modeling in the TP with complex terrains and sparse gauge observations.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Fengge Su, fgsu@itpcas.ac.cn
Save