Local and Object-based Perspectives on Atmospheric Rivers Making Landfall on the Western North American Coastline

Wen-Shu Lin 1Center for Western Weather and Water Extremes, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California

Search for other papers by Wen-Shu Lin in
Current site
Google Scholar
PubMed
Close
,
Joel R. Norris 1Center for Western Weather and Water Extremes, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California

Search for other papers by Joel R. Norris in
Current site
Google Scholar
PubMed
Close
,
Michael J. DeFlorio 1Center for Western Weather and Water Extremes, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California

Search for other papers by Michael J. DeFlorio in
Current site
Google Scholar
PubMed
Close
, and
F. Martin Ralph 1Center for Western Weather and Water Extremes, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California

Search for other papers by F. Martin Ralph in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

We apply the Ralph et al. (2019) scaling method to a reanalysis dataset to examine the climatology and variability of landfalling atmospheric rivers (ARs) along the western North American coastline during 1980–2019. The local perspective ranks AR intensity on a scale from 1 (weak) to 5 (strong) at each grid point along the coastline. The object-based perspective analyzes the characteristics of spatially independent and temporally coherent AR objects making landfall. The local perspective shows that the annual AR frequency of weak and strong ARs along the coast are highest in Oregon and Washington and lowest in southern California. Strong ARs occur less frequently than weak ARs and have a more pronounced seasonal cycle. If those ARs with integrated water vapor transport (IVT) weaker than 250 kg m−1 s−1 are included, there is an enhanced seasonal cycle of AR frequency in southern California and a seasonal cycle of AR intensity but not AR frequency in Alaska. The object-based analysis additionally indicates that strong ARs at lower latitudes are associated with stronger wind than weak ARs but similar moisture, whereas strong ARs at higher latitudes are associated with greater moisture than weak ARs but similar wind. For strong ARs, IVT at the core is largest for ARs in Oregon and Washington and smaller poleward and equatorward. Both IVT in the AR core and cumulative IVT along the coastline usually decrease after the first day of landfall for weak ARs but increase from the first to second day for strong ARs.

© 2024 American Meteorological Society. This is an Author Accepted Manuscript distributed under the terms of the default AMS reuse license. For information regarding reuse and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Wen-Shu Lin, w4lin@ucsd.edu

Abstract

We apply the Ralph et al. (2019) scaling method to a reanalysis dataset to examine the climatology and variability of landfalling atmospheric rivers (ARs) along the western North American coastline during 1980–2019. The local perspective ranks AR intensity on a scale from 1 (weak) to 5 (strong) at each grid point along the coastline. The object-based perspective analyzes the characteristics of spatially independent and temporally coherent AR objects making landfall. The local perspective shows that the annual AR frequency of weak and strong ARs along the coast are highest in Oregon and Washington and lowest in southern California. Strong ARs occur less frequently than weak ARs and have a more pronounced seasonal cycle. If those ARs with integrated water vapor transport (IVT) weaker than 250 kg m−1 s−1 are included, there is an enhanced seasonal cycle of AR frequency in southern California and a seasonal cycle of AR intensity but not AR frequency in Alaska. The object-based analysis additionally indicates that strong ARs at lower latitudes are associated with stronger wind than weak ARs but similar moisture, whereas strong ARs at higher latitudes are associated with greater moisture than weak ARs but similar wind. For strong ARs, IVT at the core is largest for ARs in Oregon and Washington and smaller poleward and equatorward. Both IVT in the AR core and cumulative IVT along the coastline usually decrease after the first day of landfall for weak ARs but increase from the first to second day for strong ARs.

© 2024 American Meteorological Society. This is an Author Accepted Manuscript distributed under the terms of the default AMS reuse license. For information regarding reuse and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Wen-Shu Lin, w4lin@ucsd.edu
Save