Geostatistical Simulation of Daily Rainfall Fields - Performance Assessment for Extremes in West Africa

Manuel Rauch aInstitute of Geography, University of Augsburg, Augsburg, Germany

Search for other papers by Manuel Rauch in
Current site
Google Scholar
PubMed
Close
,
Jan Bliefernicht aInstitute of Geography, University of Augsburg, Augsburg, Germany

Search for other papers by Jan Bliefernicht in
Current site
Google Scholar
PubMed
Close
,
Marlon Maranan bInstitute of Meteorology and Climate Research, Karlsruhe Institute of Technology, Karlsruhe, Germany

Search for other papers by Marlon Maranan in
Current site
Google Scholar
PubMed
Close
,
Andreas H. Fink bInstitute of Meteorology and Climate Research, Karlsruhe Institute of Technology, Karlsruhe, Germany

Search for other papers by Andreas H. Fink in
Current site
Google Scholar
PubMed
Close
, and
Harald Kunstmann aInstitute of Geography, University of Augsburg, Augsburg, Germany
bInstitute of Meteorology and Climate Research, Karlsruhe Institute of Technology, Karlsruhe, Germany

Search for other papers by Harald Kunstmann in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The spatial description of high-resolution extreme daily rainfall fields is challenging because of the high spatial and temporal variability of rainfall, particularly in tropical regions due to the stochastic nature of convective rainfall. Geostatistical simulations offer a solution to this problem. In this study, a stochastic geostatistical simulation technique based on the spectral turning bands method is presented for modeling daily rainfall extremes in the data-scarce tropical Ouémé river basin (Benin). This technique uses meta-Gaussian frameworks built on Gaussian random fields, which are transformed into realistic rainfall fields using statistical transfer functions. The simulation framework can be conditioned on point observations and is computationally efficient in generating multiple ensembles of extreme rainfall fields. The results of tests and evaluations for multiple extremes demonstrate the effectiveness of the simulation framework in modeling more realistic rainfall fields and capturing their variability. It successfully reproduces the empirical cumulative distribution function of the observation samples and outperforms classical interpolation techniques like Ordinary Kriging in terms of spatial continuity and rainfall variability. The study also addresses the challenge of dealing with uncertainty in data-poor areas and proposes a novel approach for determining the spatial correlation structure even with low station density, resulting in a performance boost of 9.5% compared to traditional techniques. Additionally, we present a low-skill reference simulation method to facilitate a comprehensive comparison of the geostatistical simulation approaches. The simulations generated have the potential to provide valuable inputs for hydrological modeling.

© 2024 American Meteorological Society. This is an Author Accepted Manuscript distributed under the terms of the default AMS reuse license. For information regarding reuse and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Manuel Rauch, manuel.rauch@geo.uni-augsburg.de

Abstract

The spatial description of high-resolution extreme daily rainfall fields is challenging because of the high spatial and temporal variability of rainfall, particularly in tropical regions due to the stochastic nature of convective rainfall. Geostatistical simulations offer a solution to this problem. In this study, a stochastic geostatistical simulation technique based on the spectral turning bands method is presented for modeling daily rainfall extremes in the data-scarce tropical Ouémé river basin (Benin). This technique uses meta-Gaussian frameworks built on Gaussian random fields, which are transformed into realistic rainfall fields using statistical transfer functions. The simulation framework can be conditioned on point observations and is computationally efficient in generating multiple ensembles of extreme rainfall fields. The results of tests and evaluations for multiple extremes demonstrate the effectiveness of the simulation framework in modeling more realistic rainfall fields and capturing their variability. It successfully reproduces the empirical cumulative distribution function of the observation samples and outperforms classical interpolation techniques like Ordinary Kriging in terms of spatial continuity and rainfall variability. The study also addresses the challenge of dealing with uncertainty in data-poor areas and proposes a novel approach for determining the spatial correlation structure even with low station density, resulting in a performance boost of 9.5% compared to traditional techniques. Additionally, we present a low-skill reference simulation method to facilitate a comprehensive comparison of the geostatistical simulation approaches. The simulations generated have the potential to provide valuable inputs for hydrological modeling.

© 2024 American Meteorological Society. This is an Author Accepted Manuscript distributed under the terms of the default AMS reuse license. For information regarding reuse and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Manuel Rauch, manuel.rauch@geo.uni-augsburg.de
Save