Vortex Streets in the Wake of the Aleutian Islands

Richard E. Thomson Institute of Ocean Sciences, Environment Canada, Victoria, British Columbia V8W 1Y4

Search for other papers by Richard E. Thomson in
Current site
Google Scholar
PubMed
Close
,
James F. R. Gower Institute of Ocean Sciences, Environment Canada, Victoria, British Columbia V8W 1Y4

Search for other papers by James F. R. Gower in
Current site
Google Scholar
PubMed
Close
, and
Noulan W. Bowker MacDonald Dettwiler & Associates Ltd., Richmond, British Columbia V6X 2Z9

Search for other papers by Noulan W. Bowker in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The characteristics of a series of cloud-delineated wake patterns downwind of isolated mountain barriers on the Alaskan Peninsula and eastern Aleutian Islands have been studied using a geometrically corrected NOAA satellite picture in conjunction with available meteorological information. Four of these wakes are shown to be atmospheric analogs of Kármán-type vortex streets observed in laboratory experiments. A critical Reynolds number of 92±5 has been estimated for the flow. The drag coefficients associated with the vortex streets varied from 1.1 for an irregular, asymmetrical wake to 2.3 for a regular, symmetrical wake; the turbulent eddy viscosity ranged from 1.2−1.8×103 m2 s−1 for the four vortex streets. The two vortex streets having the lowest Reynolds number flows (R= 97, 112) appear to have developed through a “double vortex street” laminar instability while the vortex street having the largest Reynolds number flow (R = 183) apparently developed through a “single vortex street” instability. Formation of the remaining vortex street (R= 120) appeared to result from a downstream growth of a mountain-induced instability in the wind field.

Abstract

The characteristics of a series of cloud-delineated wake patterns downwind of isolated mountain barriers on the Alaskan Peninsula and eastern Aleutian Islands have been studied using a geometrically corrected NOAA satellite picture in conjunction with available meteorological information. Four of these wakes are shown to be atmospheric analogs of Kármán-type vortex streets observed in laboratory experiments. A critical Reynolds number of 92±5 has been estimated for the flow. The drag coefficients associated with the vortex streets varied from 1.1 for an irregular, asymmetrical wake to 2.3 for a regular, symmetrical wake; the turbulent eddy viscosity ranged from 1.2−1.8×103 m2 s−1 for the four vortex streets. The two vortex streets having the lowest Reynolds number flows (R= 97, 112) appear to have developed through a “double vortex street” laminar instability while the vortex street having the largest Reynolds number flow (R = 183) apparently developed through a “single vortex street” instability. Formation of the remaining vortex street (R= 120) appeared to result from a downstream growth of a mountain-induced instability in the wind field.

Save