The Structure and Vorticity Budget of an Early Summer Monsoon Trough (Mei-Yu) over Southeastern China and Japan

Tai-Jen George Chen Department of Meteorology, Naval Postgraduate School, Monterey, CA 93940

Search for other papers by Tai-Jen George Chen in
Current site
Google Scholar
PubMed
Close
and
Chih-Pei Chang Department of Meteorology, Naval Postgraduate School, Monterey, CA 93940

Search for other papers by Chih-Pei Chang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

One of the most persistent rain-making events over East Asia is the development of an early summer monsoon trough (Mei-Yu) which extends from southeastern China to southern Japan. This work studies the structure and vorticity budget of a Mei-Yu system for the period 10–15 June 1975.

Subjectively analyzed grid-point data are time composited with respect to the trough axis along three cross sections over southeastern China (western section), southern East China Sea (central section) and southern Japan (eastern section), respectively, during the mature and decaying stages of the trough. The results indicate that the structure of the eastern and central sections resembles a typical midlatitude baroclinic front with strong vertical tilt toward an upper level cold core and a strong horizontal temperature gradient. On the other band, the western section resembles a semitropical disturbance with an equivalent barotropic, warm core structure, a weak horizontal temperature gradient, and a rather strong horizontal wind shear in the lower troposphere.

Cumulus convection activity south of the 850 mb trough is significant in all three sections and contributes substantially to the thermally direct secondary circulation, but the large-scale organizing mechanism differs from one section to another. In the eastern and central sections it is mainly due to differential vorticity advection while in the western section it is due to Ekman pumping (CISK). The generation of cyclonic vorticity is counteracted by cumulus damping in the eastern section and by boundary layer friction in the mountainous western section.

Abstract

One of the most persistent rain-making events over East Asia is the development of an early summer monsoon trough (Mei-Yu) which extends from southeastern China to southern Japan. This work studies the structure and vorticity budget of a Mei-Yu system for the period 10–15 June 1975.

Subjectively analyzed grid-point data are time composited with respect to the trough axis along three cross sections over southeastern China (western section), southern East China Sea (central section) and southern Japan (eastern section), respectively, during the mature and decaying stages of the trough. The results indicate that the structure of the eastern and central sections resembles a typical midlatitude baroclinic front with strong vertical tilt toward an upper level cold core and a strong horizontal temperature gradient. On the other band, the western section resembles a semitropical disturbance with an equivalent barotropic, warm core structure, a weak horizontal temperature gradient, and a rather strong horizontal wind shear in the lower troposphere.

Cumulus convection activity south of the 850 mb trough is significant in all three sections and contributes substantially to the thermally direct secondary circulation, but the large-scale organizing mechanism differs from one section to another. In the eastern and central sections it is mainly due to differential vorticity advection while in the western section it is due to Ekman pumping (CISK). The generation of cyclonic vorticity is counteracted by cumulus damping in the eastern section and by boundary layer friction in the mountainous western section.

Save