All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 90 50 5
PDF Downloads 53 26 0

Thermally Driven Motions in an Equatorial β-Plane: Hadley and Walker Circulations During the Winter Monsoon

Ka-Ming LauGoddard Laboratory for Atmospheric Sciences, NASA/Goddard Space Flight Center, Greenbelt, MD 20771

Search for other papers by Ka-Ming Lau in
Current site
Google Scholar
PubMed
Close
and
Hock LimDepartment of Meteorology, Naval Postgraduate School, Monterey, CA 93940

Search for other papers by Hock Lim in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The linearized shallow-water equatorial β-plane equation was solved for a subset of approximate solutions applicable to thermally driven large-scale tropical circulation. In particular, the heat-induced monsoon circulations during Southeast Asian northeasterly cold surges are investigated. It was demonstrated that the response of the tropical atmosphere to a localized heat source consists of forced Rossby waves propagating westward and Kelvin waves eastward along the equator away from the region of forcing. In general, for any source/sink distribution, the heat-induced motion can have the characteristics of a Walker-type (ν = 0 at the equator) or a Hadley-type (u = 0 at the equator) response or a combination of both, depending on the latitudinal location of the forcing. Away from the equator, a forcing corresponding to the sudden imposition of mass at the lower layer, or equivalently in our model a rapid cooling of the lower troposphere, produces a sudden local surface pressure rise and strong anticyclonic flow to the west of the forcing. Strong NE-SW till in the axis of the anticyclone is observed and can be understood in terms of the dispersion of the various wave modes excited. The low-latitude response is, as expected, dominated by Kelvin and the gravest Rossby wave modes.

Coupled with an equatorial heat source, the sudden cooling of the lower troposphere over a localized area in the subtropics gives rise to a northeasterly wind surge and large-scale Walker and Hadley circulations reminiscent of periods of strong cold surges over East Asia. Finally, the effect of the presence of a mean wind is shown to modify the spatial extent of the equatorial circulation with a mean easterly wind favoring the formation of equatorially trapped Walker cells.

Abstract

The linearized shallow-water equatorial β-plane equation was solved for a subset of approximate solutions applicable to thermally driven large-scale tropical circulation. In particular, the heat-induced monsoon circulations during Southeast Asian northeasterly cold surges are investigated. It was demonstrated that the response of the tropical atmosphere to a localized heat source consists of forced Rossby waves propagating westward and Kelvin waves eastward along the equator away from the region of forcing. In general, for any source/sink distribution, the heat-induced motion can have the characteristics of a Walker-type (ν = 0 at the equator) or a Hadley-type (u = 0 at the equator) response or a combination of both, depending on the latitudinal location of the forcing. Away from the equator, a forcing corresponding to the sudden imposition of mass at the lower layer, or equivalently in our model a rapid cooling of the lower troposphere, produces a sudden local surface pressure rise and strong anticyclonic flow to the west of the forcing. Strong NE-SW till in the axis of the anticyclone is observed and can be understood in terms of the dispersion of the various wave modes excited. The low-latitude response is, as expected, dominated by Kelvin and the gravest Rossby wave modes.

Coupled with an equatorial heat source, the sudden cooling of the lower troposphere over a localized area in the subtropics gives rise to a northeasterly wind surge and large-scale Walker and Hadley circulations reminiscent of periods of strong cold surges over East Asia. Finally, the effect of the presence of a mean wind is shown to modify the spatial extent of the equatorial circulation with a mean easterly wind favoring the formation of equatorially trapped Walker cells.

Save