The Effect of Model Resolution and Satellite Sounding Data on GLAS Model Forecasts

View More View Less
  • 1 Laboratory for Atmospheric Sciences, NASA/Goddard Space Flight Center, Greenbelt, MD 20771
© Get Permissions
Restricted access

Abstract

An experiment was performed to study the effect of increased model resolution on satellite sounding data impact. Assimilation cycles were carried out with data from 0000 GMT 29 January to 0300 GMT 21 February 1976, using coarse- and fine-resolution versions of the GLAS second-order general circulation model (GCM). For each model resolution, an assimilation cycle was performed using both conventional and experimental data, which included temperature soundings from the NOAA-4 and Nimbus-6 satellites. A second cycle was run using the same data but excluding the satellite-derived temperature soundings.

The objective analyses produced by the assimilation cycles were used as initial states for a series of evenly spaced 72 h numerical weather forecasts. Eleven forecasts with the same resolution in the forecast model as in the data assimilation were performed at 48 h intervals for each assimilation. Additional forecasts were made with the higher resolution forecast model from the lower resolution assimilation cycle and vice versa. Initial state differences were evaluated in terms of the magnitude, location and structure of large-scale differences between meteorological fields. Numerical prediction differences were evaluated by means of objective scores and subjective comparisons.

Objective scores show a substantially larger beneficial impact of the sounding data at 48 and 60 h with the higher resolution version of the model. Subjective evaluation also revealed a larger positive impact of satellite sounding data with the higher resolution model.

This study has two important limitations: it was carried out with two versions of one model, the GLAS GCM, and the number of forecast cases analyzed is small. Within these limitations, our results indicate that model improvement enhances the impact of satellite data.

Abstract

An experiment was performed to study the effect of increased model resolution on satellite sounding data impact. Assimilation cycles were carried out with data from 0000 GMT 29 January to 0300 GMT 21 February 1976, using coarse- and fine-resolution versions of the GLAS second-order general circulation model (GCM). For each model resolution, an assimilation cycle was performed using both conventional and experimental data, which included temperature soundings from the NOAA-4 and Nimbus-6 satellites. A second cycle was run using the same data but excluding the satellite-derived temperature soundings.

The objective analyses produced by the assimilation cycles were used as initial states for a series of evenly spaced 72 h numerical weather forecasts. Eleven forecasts with the same resolution in the forecast model as in the data assimilation were performed at 48 h intervals for each assimilation. Additional forecasts were made with the higher resolution forecast model from the lower resolution assimilation cycle and vice versa. Initial state differences were evaluated in terms of the magnitude, location and structure of large-scale differences between meteorological fields. Numerical prediction differences were evaluated by means of objective scores and subjective comparisons.

Objective scores show a substantially larger beneficial impact of the sounding data at 48 and 60 h with the higher resolution version of the model. Subjective evaluation also revealed a larger positive impact of satellite sounding data with the higher resolution model.

This study has two important limitations: it was carried out with two versions of one model, the GLAS GCM, and the number of forecast cases analyzed is small. Within these limitations, our results indicate that model improvement enhances the impact of satellite data.

Save