Vertical Differencing of the Primitive Equations in Sigma Coordinates

Akio Arakawa Department of Atmospheric Sciences, University of California, Los Angeles, 90024

Search for other papers by Akio Arakawa in
Current site
Google Scholar
PubMed
Close
and
Max J. Suarez Department of Atmospheric Sciences, University of California, Los Angeles, 90024

Search for other papers by Max J. Suarez in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

A vertical finite-difference scheme for the primitive equations in sigma coordinates is obtained by requiring that the discrete equations retain some important properties of the continuous equations. A family of schemes is derived whose members conserve total energy, maintain an integral constraint on the vertically integrated pressure gradient force, have a local differencing of the hydrostatic equation, and give exact forms of the hydrostatic equation and the pressure gradient force for particular atmospheres. The proposed scheme is a member of this family that in addition conserves the global mass integral of the potential temperature under abiabatic processes.

Abstract

A vertical finite-difference scheme for the primitive equations in sigma coordinates is obtained by requiring that the discrete equations retain some important properties of the continuous equations. A family of schemes is derived whose members conserve total energy, maintain an integral constraint on the vertically integrated pressure gradient force, have a local differencing of the hydrostatic equation, and give exact forms of the hydrostatic equation and the pressure gradient force for particular atmospheres. The proposed scheme is a member of this family that in addition conserves the global mass integral of the potential temperature under abiabatic processes.

Save