All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 117 56 24
PDF Downloads 90 40 0

Budgets of Divergent and Rotational Kinetic Energy during Two Periods of Intense Convection

Dennis E. BuechlerDepartment of Earth and Atmospheric Sciences, Saint Louis University, St. Louis, MO 63103

Search for other papers by Dennis E. Buechler in
Current site
Google Scholar
PubMed
Close
and
Henry E. FuelbergDepartment of Earth and Atmospheric Sciences, Saint Louis University, St. Louis, MO 63103

Search for other papers by Henry E. Fuelberg in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Budgets of divergent and rotational components of kinetic energy (KD and KR) are investigated for two periods of intense convection. Derivations of the budget equations are presented for limited volumes in terms of VD and VR. The two periods being studied are AVE IV (synoptic scale data at 3 or 6 h intervals) and AVE-SESAME 1 (meso α-male data every 3 h). Energetics are presented for each composite period, and for individual observation times. Two types of sensitivity analyses establish confidence limits in the energy parameters.

Results from the two cases exhibit many similarities. The most striking are major increases in KD (which is generally quite small) and its budget terms with convective development. During storm activity, major sources of KD are provided by divergent cross-contour generation and dissipation. The major difference between the cases is the opposite conversion between KD and KR. This is due to differing contributions of the various conversion components which arise from the different scales of data and synoptic settings. Current findings for the convective environment contrast ready with those for larger areas and longer times. Also, results emphasize that proper representation of convectively active areas at smaller scales requires numerical models that adequately describe the energetics involving KD.

Abstract

Budgets of divergent and rotational components of kinetic energy (KD and KR) are investigated for two periods of intense convection. Derivations of the budget equations are presented for limited volumes in terms of VD and VR. The two periods being studied are AVE IV (synoptic scale data at 3 or 6 h intervals) and AVE-SESAME 1 (meso α-male data every 3 h). Energetics are presented for each composite period, and for individual observation times. Two types of sensitivity analyses establish confidence limits in the energy parameters.

Results from the two cases exhibit many similarities. The most striking are major increases in KD (which is generally quite small) and its budget terms with convective development. During storm activity, major sources of KD are provided by divergent cross-contour generation and dissipation. The major difference between the cases is the opposite conversion between KD and KR. This is due to differing contributions of the various conversion components which arise from the different scales of data and synoptic settings. Current findings for the convective environment contrast ready with those for larger areas and longer times. Also, results emphasize that proper representation of convectively active areas at smaller scales requires numerical models that adequately describe the energetics involving KD.

Save