Variability of Monthly-Averaged Surface and 850 mb Winds at Tropical Pacific Islands

D. E. Harrison Center for Meteorology and Physical Oceanography, Massachusetts Institute of Technology, Cambridge, MA 02139 and Pacific Marine Environmental Laboratory/N0AA, Seattle, WA 98105

Search for other papers by D. E. Harrison in
Current site
Google Scholar
PubMed
Close
and
D. S. Gutzler Center for Meteorology and Physical Oceanography, Massachusetts Institute of Technology, Cambridge, MA 02139

Search for other papers by D. S. Gutzler in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

We examine the variability of monthly mean winds at 850 mb and the surface from five island stations in the tropical western Pacific Ocean. Climatological winds and (850 mb-surface) wind shear are evaluated and used to construct time series of monthly mean wind and shear anomalies. Wind variance at 850 mb tends to be substantially greater than at the surface, and large temporal variations in shear are found. Prominent anomalies are associated with El Niño–Southern Oscillation periods. Composite El Niño event anomalies are examined; it is found that the westerly wind anomalies associated with warm central Pacific sea surface temperatures are stronger at 850 mb than at the surface, and that the anomalous (850 mb-surface) shears are as large as the surface wind anomalies themselves.

Several simple techniques are described to investigate the feasibility of estimating surface wind anomalies from 850 mb wind anomalies. Because strong correlations exist between the zonal winds at these levels, zonal estimate errors can be reduced to ≈0.5 m s−1 if known shear statistics are included in the estimate algorithm. Estimates which extrapolate cloud level wind anomalies to the surface using only climatological shear are shown to produce much greater surface wind errors. If these results are representative and if accurate monthly mean winds at 850 mb can be obtained from cloud motion vectors, then very useful low-frequency surface wind fields can be derived from cloud motion data.

Abstract

We examine the variability of monthly mean winds at 850 mb and the surface from five island stations in the tropical western Pacific Ocean. Climatological winds and (850 mb-surface) wind shear are evaluated and used to construct time series of monthly mean wind and shear anomalies. Wind variance at 850 mb tends to be substantially greater than at the surface, and large temporal variations in shear are found. Prominent anomalies are associated with El Niño–Southern Oscillation periods. Composite El Niño event anomalies are examined; it is found that the westerly wind anomalies associated with warm central Pacific sea surface temperatures are stronger at 850 mb than at the surface, and that the anomalous (850 mb-surface) shears are as large as the surface wind anomalies themselves.

Several simple techniques are described to investigate the feasibility of estimating surface wind anomalies from 850 mb wind anomalies. Because strong correlations exist between the zonal winds at these levels, zonal estimate errors can be reduced to ≈0.5 m s−1 if known shear statistics are included in the estimate algorithm. Estimates which extrapolate cloud level wind anomalies to the surface using only climatological shear are shown to produce much greater surface wind errors. If these results are representative and if accurate monthly mean winds at 850 mb can be obtained from cloud motion vectors, then very useful low-frequency surface wind fields can be derived from cloud motion data.

Save