Tropical Cyclone Simulations with the Betts Convective Adjustment Scheme. Part I: Model Description and Control Simulation

View More View Less
  • 1 Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University, Raleigh, North Carolina
  • | 2 Hurricane Research Division, AOML/NOAA, Miami, Florida
  • | 3 Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University, Raleigh, North Carolina
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

A new convective parameterization scheme proposed by Betts is tested in a tropical cyclone model. The convective adjustment scheme adjusts the local temperature and moisture structures towards the observed quasi-equilibrium thermodynamic state and includes nonprecipitating shallow convection as well as deep convection. The numerical model used for this study is an axisymmetric, primitive equation, hydrostatic, finite difference model with 15 vertical levels and a horizontal resolution of 20 km. The spectral radiation boundary condition, which uses a different gravity wave speed for each vertical mode, is implemented in the model.

It is shown that the convective scheme is capable of simulating the developing, rapidly intensifying, and mature stages of a tropical cyclone from a weak vortex. At the mature stage, the minimum surface pressure and maximum low level tangential wind speed are around 923 mb and 58 m s−1. During the early developing stage, the latent heat release is from the convective parameterization, but at the mature stage the latent heat release is mainly due to the grid-scale phase change.

For comparison, an experiment is conducted with the parameterized convection excluded, leaving only the grid-scale condensation and evaporation. The results show that the development of a tropical cyclone can be modeled with crude grid-scale condensation and evaporation processes for the 20 km horizontal resolution, similar to other studies. However, the storm with the explicit convective latent heat release is considerably less intense than that with the parameterized convective latent heat release.

Abstract

A new convective parameterization scheme proposed by Betts is tested in a tropical cyclone model. The convective adjustment scheme adjusts the local temperature and moisture structures towards the observed quasi-equilibrium thermodynamic state and includes nonprecipitating shallow convection as well as deep convection. The numerical model used for this study is an axisymmetric, primitive equation, hydrostatic, finite difference model with 15 vertical levels and a horizontal resolution of 20 km. The spectral radiation boundary condition, which uses a different gravity wave speed for each vertical mode, is implemented in the model.

It is shown that the convective scheme is capable of simulating the developing, rapidly intensifying, and mature stages of a tropical cyclone from a weak vortex. At the mature stage, the minimum surface pressure and maximum low level tangential wind speed are around 923 mb and 58 m s−1. During the early developing stage, the latent heat release is from the convective parameterization, but at the mature stage the latent heat release is mainly due to the grid-scale phase change.

For comparison, an experiment is conducted with the parameterized convection excluded, leaving only the grid-scale condensation and evaporation. The results show that the development of a tropical cyclone can be modeled with crude grid-scale condensation and evaporation processes for the 20 km horizontal resolution, similar to other studies. However, the storm with the explicit convective latent heat release is considerably less intense than that with the parameterized convective latent heat release.

Save