All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1 1 1
PDF Downloads 1 1 1

The Conjugate-Gradient Variational Analysis and Initialization Method: An Application to MONEX SOP 2 Data

View More View Less
  • 1 Department of atmospheric Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois
  • | 2 Department of Mathematics and Supercomputer Computations Research Institute, Florida State University, Tallahassee, Florida
Restricted access

Abstract

A conjugate-gradient variational blending technique, based on the method of direct minimization, has been developed and applied to the problem of initialization in a limited-area model in the summer monsoon region. The aim is to blend gridded winds from a high-resolution limited-area analysis with a lower-resolution global analysis for use in a limited-area model that uses the, global analyst for boundary conditions. The ability of the variational matching approach in successfully blending meteorological analyses of varying resolutions is demonstrated. Reasonable agreement is found between the blended analyses and the imposed weak constraints, together with an adequate rate of convergence in the unconstrained minimization procedure. The technique is tested on the 1979 onset vortex vortex case using data from the FGGE Summer MONEX campaign. The results indicate that the forecasts made from the variationally matched analyses show positive impact and perform better than those from the unblended analyses.

Abstract

A conjugate-gradient variational blending technique, based on the method of direct minimization, has been developed and applied to the problem of initialization in a limited-area model in the summer monsoon region. The aim is to blend gridded winds from a high-resolution limited-area analysis with a lower-resolution global analysis for use in a limited-area model that uses the, global analyst for boundary conditions. The ability of the variational matching approach in successfully blending meteorological analyses of varying resolutions is demonstrated. Reasonable agreement is found between the blended analyses and the imposed weak constraints, together with an adequate rate of convergence in the unconstrained minimization procedure. The technique is tested on the 1979 onset vortex vortex case using data from the FGGE Summer MONEX campaign. The results indicate that the forecasts made from the variationally matched analyses show positive impact and perform better than those from the unblended analyses.

Save