Staggered Turkel-Zwas Schemes for Two-Dimensional Shallow-Water Equations

Yuhe Song Institute of Marine and Coastal Sciences, Rutgers University, New Brunswick, New Jersey

Search for other papers by Yuhe Song in
Current site
Google Scholar
PubMed
Close
and
Tao Tang Department of Mathematics and Statistics, Simon Fraser University, Burnaby, British Columbia, Canada

Search for other papers by Tao Tang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Turkel-Zwas-type schemes employ coarse grids to discretize the terms associated with the fast gravity-inertia waves and use fine grids to treat the terms associated with the slow Rossby waves. The ratio of the coarse and fine grids is an integer, p>1, and one can use time steps nearly p times larger than those allowed by the Courant-Friedrich-Lewy condition for the usual explicit leapfrog scheme. This paper investigates the Turkel-Zwas-type schemes with three spatial grids-namely, A (unstaggered), B, and C grids (staggered)-for two-dimensional shallow-water equations. A new method that uses the Laplace transform is introduced to solve the two-dimensional phase solutions. Comparisons of the three grids with coarse and fine-grid resolutions are made. One realistic model problem is tested to verify the linear analysis results. The test shows that the Turkel-Zwas-type schemes can be used for a larger time step in some practical simulations.

Abstract

The Turkel-Zwas-type schemes employ coarse grids to discretize the terms associated with the fast gravity-inertia waves and use fine grids to treat the terms associated with the slow Rossby waves. The ratio of the coarse and fine grids is an integer, p>1, and one can use time steps nearly p times larger than those allowed by the Courant-Friedrich-Lewy condition for the usual explicit leapfrog scheme. This paper investigates the Turkel-Zwas-type schemes with three spatial grids-namely, A (unstaggered), B, and C grids (staggered)-for two-dimensional shallow-water equations. A new method that uses the Laplace transform is introduced to solve the two-dimensional phase solutions. Comparisons of the three grids with coarse and fine-grid resolutions are made. One realistic model problem is tested to verify the linear analysis results. The test shows that the Turkel-Zwas-type schemes can be used for a larger time step in some practical simulations.

Save