All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 98 29 4
PDF Downloads 34 12 0

Influences of Model Parameterization Schemes on the Response of Rainfall to Soil Moisture in the Central United States

Zaitao PanDepartment of Geological and Atmospheric Sciences, Iowa State University, Ames, Iowa

Search for other papers by Zaitao Pan in
Current site
Google Scholar
PubMed
Close
,
Eugene TakleDepartment of Geological and Atmospheric Sciences and Department of Agronomy, Iowa State University, Ames, Iowa

Search for other papers by Eugene Takle in
Current site
Google Scholar
PubMed
Close
,
Moti SegalDepartment of Agronomy, Iowa State University, Ames, Iowa

Search for other papers by Moti Segal in
Current site
Google Scholar
PubMed
Close
, and
Richard TurnerDepartment of Geological and Atmospheric Sciences, Iowa State University, Ames, Iowa

Search for other papers by Richard Turner in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The sensitivities of soil moisture impacts on summer rainfall in the central United States to different commonly used cumulus parameterization and surface flux schemes are examined using the PSU-NCAR MMS under different atmospheric and soil moisture conditions. The cumulus convection schemes used are the Kuo and Grell parameterization schemes, while the surface-moisture flux schemes used are the aerodynamic formulation and the Simple Biosphere (SiB) Model. Results show that a transient increase in soil moisture enhanced total rainfall over the simulation domain. The increase in soil moisture enhanced local rainfall when the lower atmosphere was thermally unstable and relatively dry, but it decreased the rainfall when the atmosphere was humid and lacked sufficient thermal forcing to initiate deep convection. Soil moisture impacts were noticeably stronger for the Kuo scheme, which simulated lighter peak rainfall, than those for the Grell scheme, which simulated heavier peak rainfall. The greater sensitivity to soil moisture exhibited by the Kuo scheme than either the Grell or explicit scheme implies that it exaggerated the role of soil moisture. This difference was related to how each scheme partitioned rainfall between convective and stable forms, and possibly to each scheme's closure assumptions. Adding details to the surface-moisture flux schemes had a secondary influence on soil moisture impacts on rainfall within a 24-h period.

Abstract

The sensitivities of soil moisture impacts on summer rainfall in the central United States to different commonly used cumulus parameterization and surface flux schemes are examined using the PSU-NCAR MMS under different atmospheric and soil moisture conditions. The cumulus convection schemes used are the Kuo and Grell parameterization schemes, while the surface-moisture flux schemes used are the aerodynamic formulation and the Simple Biosphere (SiB) Model. Results show that a transient increase in soil moisture enhanced total rainfall over the simulation domain. The increase in soil moisture enhanced local rainfall when the lower atmosphere was thermally unstable and relatively dry, but it decreased the rainfall when the atmosphere was humid and lacked sufficient thermal forcing to initiate deep convection. Soil moisture impacts were noticeably stronger for the Kuo scheme, which simulated lighter peak rainfall, than those for the Grell scheme, which simulated heavier peak rainfall. The greater sensitivity to soil moisture exhibited by the Kuo scheme than either the Grell or explicit scheme implies that it exaggerated the role of soil moisture. This difference was related to how each scheme partitioned rainfall between convective and stable forms, and possibly to each scheme's closure assumptions. Adding details to the surface-moisture flux schemes had a secondary influence on soil moisture impacts on rainfall within a 24-h period.

Save