• Anthes, R. A., and T. T. Warner, 1978: Development of hydrodynamic models suitable for air pollution and other mesometeorological studies. Mon. Wea. Rev.,106, 1045–1078.

  • Asselin, R. A., 1972: Frequency filter for time integrations. Mon. Wea. Rev.,100, 487–490.

  • Bartello, P., O. Métais, and M. Lesieur, 1996: Geostrophic versus wave eddy viscosities in atmospheric models. J. Atmos. Sci.,53, 564–571.

  • Benoit, R., J. Co̊té, and J. Mailhot, 1989: Inclusion of a TKE boundary layer parameterization in the Canadian regional finite-element model. Mon. Wea. Rev.,117, 1726–1750.

  • ——, S. Pellerin, and W. Yu, 1995: MC2 model performances during the Beaufort and Arctic Storms Experiment. Atmos.–Ocean,35, 221–244.

  • Bubnova, R., G. Hello, P. Bénard, and J.-F. Geleyn, 1995: Integration of the fully elastic equations cast in the hydrostatic pressure terrain-following coordinate in the framework of the ARPEGE/Aladin NWP system. Mon. Wea. Rev.,123, 515–535.

  • Burk, S. D., and W. T. Thompson, 1989: A vertically nested regional numerical weather prediction model with second-order closure physics. Mon. Wea. Rev.,117, 2305–2324.

  • Caya, D., R. Laprise, M. Giguère, G. Bergeron, J.-P.Blanchet, B. J. Stocks, G. J. Boer, and N. A. McFarlane, 1995: Description of the Canadian RCM. Water Air Soil Pollut.,82 (1/2), 477–482.

  • Chouinard, C., J. Mailhot, H. L. Mitchell, A. Staniforth, and R. Hogue, 1994: The Canadian regional data assimilation system: Operational and research applications. Mon. Wea. Rev.,122, 1306–1325.

  • Clark, T. L., and W. R. Peltier, 1977: On the evolution and stability of finite-amplitude mountain waves. J. Atmos. Sci.,34, 1715–1730.

  • Côté, J., M. Roch, A. Staniforth, and L. Fillion, 1993: A variable-resolution semi-Lagrangian finite-element global model of the shallow-water equations. Mon. Wea. Rev.,121, 231–243.

  • ——, S. Gravel, A. Méthot, A. Patoine, M. Roch, and A. Staniforth, 1995: Preliminary results from a dry global variable-resolution PE model. Atmos.–Ocean,35, 245–259.

  • Courtier, P., J. N. Thépaut, and A. Hollingsworth, 1994: A strategy for the operational implementation of 4D-var using an incremental approach. Quart. J. Roy. Meteor. Soc.,120, 1367–1387.

  • Daley, R. W., 1988: The normal modes of the spherical non-hydrostatic equations with applications to the filtering of acoustic modes. Tellus,40A, 96–106.

  • Davies, H. C., 1976: A lateral boundary formulation for multi-level prediction models. Quart. J. Roy. Meteor. Soc.,102, 405–418.

  • Deardorff, J. W., 1978: Efficient prediction of ground surface temperature and moisture with inclusion of a layer of vegetation. J. Geophys. Res.,83, 1889–1903.

  • Delage, Y., 1988: The position of the lowest levels in the boundary layer of atmospheric circulation models. Atmos.–Ocean,26, 329–340.

  • Dirks, R. A., J. P. Kuettner, and J. A. Moore, 1988: Genesis of Atlantic Lows Experiment (GALE): An overview. Bull. Amer. Meteor. Soc.,69, 148–160.

  • Durran, D. R., 1986: Another look at downslope windstorms. Part I: The development of analogs to supercritical flow in an infinitely deep, continuously stratified fluid. J. Atmos. Sci.,43, 2527–2543.

  • ——, 1990: Mountain waves and downslope winds. Atmospheric Processes over Complex Terrain, W. Blumen, Ed., Amer. Meteor. Soc., 59–82.

  • Fouquart, Y., and B. Bonnel, 1980: Computations of solar heating of the earth’s atmosphere: A new parameterization. Contrib. Atmos. Phys.,53, 35–62.

  • Fritsch, J. M., and C. F. Chappell, 1980: Numerical prediction of convectively driven mesoscale pressure systems. Part I: Convective parameterization. J. Atmos. Sci.,37, 1722–1733.

  • Gal-Chen, T., and R. Somerville, 1975: On the use of a coordinate transformation for the solution of the Navier–Stokes equations. J. Comput. Phys.,17(2), 209–228.

  • Garand, L., 1983: Some improvements and complements to the infrared emissivity algorithm including a parameterization of the absorption in the continuum region. J. Atmos. Sci.,40, 230–244.

  • ——, and J. Mailhot, 1990: The influence of infrared radiation on numerical weather forecasts. Preprints, Seventh Conf. on Atmospheric Radiation, San Francisco, CA, Amer. Meteor. Soc., J146–J151.

  • Grell, G. A., J. Dudhia, and D. R. Stauffer, 1993: A descriptionof the fifth-generation Penn State/NCAR mesoscale model (MM5). NCAR Tech. Note NCAR/TN-398, 122 pp. [Available from NCAR Information Services, P.O. Box 3000, Boulder, CO 80307.].

  • Gyakum, J. R., and Coauthors, 1995: First COMPARE workshop summary. Bull. Amer. Meteor. Soc.,76, 1209–1218.

  • ——, and Coauthors, 1996: A regional model intercomparison using a case of explosive oceanic cyclogenesis. Wea. Forecasting,11, 521–543.

  • Héreil, P., and R. Laprise, 1996: Sensitivity of internal gravity waves solutions to the time step of a semi-implicit semi-Lagrangian nonhydrostatic model. Mon. Wea. Rev.,124, 972–999.

  • Holton, J. R., 1992: An Introduction to Dynamic Meteorology. 3d ed. Academic Press, 511 pp.

  • Hoskins, B. J., M. E. McIntyre, and A. W. Robertson, 1985: On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc.,111, 877–946.

  • Imbard, M., R. Juvanon du Vachat, A. Joly, Y. Durand, A. Craplet, J.-F. Geleyn, J. M. Audoin, N. Marie, and J. M. Pairin, 1987: The Peridot fine-mesh numerical weather prediction system: Description, evaluation and experiments. Short- and Medium-Range Numerical Weather Prediction, T. Matsuno, Ed., Meteor. Soc. Japan, 455–465.

  • Jackson, P. L., and D. G. Steyn, 1994: Gap winds in a fjord. Part I: Observations and numerical simulation. Mon. Wea. Rev.,122, 2645–2665.

  • Jakimow, G., E. Yakimiw, and A. Robert, 1992: An implicit formulation for horizontal diffusion in gridpoint models. Mon. Wea. Rev.,120, 124–130.

  • Kain, J. S., and J. M. Fritsch, 1990: A one-dimensional entraining/detraining plume model and its application in convective parameterization. J. Atmos. Sci.,47, 2784–2802.

  • Klemp, J. B., and D. K. Lilly, 1975: The dynamics of wave-induced downslope winds. J. Atmos. Sci.,32, 320–339.

  • ——, and R. B. Wilhelmson, 1978: Simulations of three-dimensional convective storm dynamics. J. Atmos. Sci.,35, 1070–1096.

  • Kuo, H. L., 1974: Further studies of the parameterization of the influence of cumulus convection on large-scale flow. J. Atmos. Sci.,31, 1232–1240.

  • Laprise, R., 1995: The formulation of André Robert’s MC2 (Mesoscale Compressible Community) model. Atmos.–Ocean,35, 195–200.

  • ——, and W. R. Peltier, 1989a: The linear stability of nonlinear mountain waves: Implications for the understanding of severe downslope windstorms. J. Atmos. Sci.,46, 545–564.

  • ——, and ——, 1989b: On the structural characteristics of steady finite-amplitude mountain waves over bell-shaped topography. J. Atmos. Sci.,46, 586–595.

  • Long, R. R., 1953: Some aspect of the flow of stratified fluids. I: A theoretical investigation. Tellus,5, 42–58.

  • ——, 1954: Some aspect of the flow of stratified fluids. II: Experiments with a two-fluid system. Tellus,6, 97–115.

  • Lott, F., and M. Miller, 1994: A new sub-grid scale orographic drag parametrization: Its formulation and testing. ECMWF Research Dept. Tech. Memo. 218, 59 pp. [Available from ECMWF, Reading, RG2 9AX, UK.].

  • Mailhot, J., 1994: The Regional Finite-Element (RFE) Modelscientific description. Part 2: Physics. [Available from RPN, 2121 Trans-Canada, Dorval, QC H9P 1J3, Canada].

  • ——, and C. Chouinard, 1989: Numerical forecasts of explosive winter storms: Sensitivity experiments with a meso-alpha-scale model. Mon. Wea. Rev.,117, 1311–1343.

  • ——, ——, R. Benoit, M. Roch, G. Verner, J. Co̊té, and J. Pudykiewicz, 1989: Numerical forecasting of winter coastal storms during CASP: Evaluation of the regional finite-element model. Atmos.–Ocean,27, 27–58.

  • ——, and Coauthors, 1995a: Changes to the Canadian regional forecast system: Description and evaluation of the 50-km version. Atmos.–Ocean,33, 55–80.

  • ——, R. Benoit, P. Pellerin, V. Lee, N. Kouwen, E. D. Soulis, G. Kite, and L. Welsh, 1995b: Fine-scale modelling of intense orographic precipitation over the Columbia River Basin and coupling with distributed hydrology models. Proc. Canadian Water Resources Association 48th Annual Conf., Fredericton, New Brunswick, Canada, CWRA, 589–604.

  • McFarlane, N. A., 1987: The effect of orographically excited gravity wave drag on the general circulation of the lower stratosphere and troposphere. J. Atmos. Sci.,44, 1775–1800.

  • Palko, S., L. St-Laurent, T. Huffman, and E. Unrau, 1996: The Canada vegetation and land cover: A raster and vector data set for GIS applications—Uses in agriculture. GIS Applications in Natural Resources 2, M. Heit et al., Eds., GIS World, 185–191.

  • Peaceman, D. W., and H. H. Rachford, 1955: The numerical solution of parabolic and elliptic differential equations. SIAM,3 (1), 28–41.

  • Pellerin, P., R. Laprise, and I. Zawadzki, 1995: The performance of a semi-Lagrangian transport scheme for the advection–condensation problem. Mon. Wea. Rev.,123, 3318–3330.

  • Peltier, W. R., and T. L. Clark, 1979: The evolution and stability of finite-amplitude mountain waves. Part II: Surface wave drag and severe downslope windstorms. J. Atmos. Sci.,36, 1498–1529.

  • Pielke, R. A., and Coauthors, 1992: A comprehensive meteorological modeling system—RAMS. Meteor. Atmos. Phys.,49, 69–91.

  • Pierrehumbert, R. T., and B. Wyman, 1985: Upstream effects of mesoscale mountains. J. Atmos. Sci.,42, 977–1003.

  • Pinty, J.-P., R. Benoit, E. Richard, and R. Laprise, 1995: Simple tests of a semi-implicit semi-Lagrangian model on 2D mountain wave problems. Mon. Wea. Rev.,123, 3042–3058.

  • Queney, P., 1948: The problem of airflow over mountains. A summary of theoretical studies. Bull. Amer. Meteor. Soc.,29, 16–26.

  • Ritchie, H., 1991: Application of the semi-Lagrangian method to a multilevel spectral primitive-equations model. Quart. J. Roy. Meteor. Soc.,117, 91–106.

  • ——, and M. Tanguay, 1996: A comparison of spatially averaged Eulerian and semi-Lagrangian treatments of mountains. Mon. Wea. Rev.,124, 167–181.

  • Robert, A., and E. Yakimiw, 1986: Identification and elimination of an inflow boundary computational solution in limited area model integrations. Atmos.–Ocean,24, 369–385.

  • Sass, B. H., and J. H. Christensen, 1995: A simple framework for testing the quality of atmospheric limited-area models. Mon.Wea. Rev.,123, 444–459.

  • Simmons, A. J., B. J. Hoskins, and D. M. Burridge, 1978: Stability of the semi-implicit method of time integration. Mon. Wea. Rev.,106, 405–412.

  • Smith, R. B., 1985: On severe downslope winds. J. Atmos. Sci.,42, 2597–2603.

  • Stein, J., 1992: Investigation of the regime diagram of hydrostatic flow over a mountain with a primitive equation model. Part I: Two-dimensional flows. Mon. Wea. Rev.,120, 2962–2976.

  • Stewart, R. E., R. W. Shaw, and G. A. Isaac, 1987: Canadian Atlantic Storms Program: The meteorological field project. Bull. Amer. Meteor. Soc.,68, 338–345.

  • Sundqvist, H., E. Berge, and J. E. Kristjansson, 1989: Condensation and cloud parameterization studies with a mesoscale numerical weather prediction model. Mon. Wea. Rev.,117, 1641–1657.

  • Tanguay, M., A. Robert, and R. Laprise, 1990: A semi-implicit semi-Lagrangian fully compressible regional forecast model. Mon. Wea. Rev.,118, 1970–1980.

  • ——, E. Yakimiw, H. Ritchie, and A. Robert, 1992: Advantages of spatial averaging in semi-Lagrangian schemes. Mon. Wea. Rev.,120, 113–123.

  • Tapp, M. C., and P. W. White, 1976: A nonhydrostatic mesoscale model. Quart. J. Roy. Meteor. Soc.,102, 277–296.

  • Temperton, C., and M. Roch, 1991: Implicit normal mode initialization for an operational regional model. Mon. Wea. Rev.,119, 667–677.

  • Tokioka, T., 1978: Some considerations on vertical differencing. J. Meteor. Soc. Japan,56, 98–111.

  • Tremblay, A., A. Glazer, W. Yu, and R. Benoit, 1996: A mixed-phase cloud scheme based on a single prognostic equation. Tellus,48A, 483–500.

  • Verseghy, D. L., N. A. McFarlane, and M. Lazare, 1993: CLASS—A Canadian land surface scheme for GCMs. II. Vegetation model and coupled runs. Int. J. Climatol.,13, 347–370.

  • Yakimiw, E., and A. Robert, 1990: Validation experiments for a nested grid-point regional forecast model. Atmos.–Ocean,28, 466–472.

  • Zawadzki, I., L. Ostiguy, and R. Laprise, 1994: Retrieval of the microphysical properties in a CASP storm by integration of numerical kinematical model. Atmos.–Ocean,31, 201–233.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 289 139 13
PDF Downloads 137 57 4

The Canadian MC2: A Semi-Lagrangian, Semi-Implicit Wideband Atmospheric Model Suited for Finescale Process Studies and Simulation

View More View Less
  • 1 Recherche en Prévision Numérique, Environment Canada, Dorval, Québec, Canada
  • | 2 Maritime Weather Centre, Environment Canada, Bedford, Nova Scotia, Canada
Restricted access

Abstract

This paper attempts to document the developmental research and early mesoscale results of the new fully nonhydrostatic atmospheric model called MC2 (mesoscale compressible community). Its numerical scheme is the semi-implicit semi-Lagrangian approach conceived and demonstrated by Tanguay, Robert, and Laprise. The dominant effort required to become a full-fledged mesoscale model was to connect it properly to a full-scale and evolving physics package; the enlarged scope of a package previously dedicated to hydrostatic pressure coordinate-type models posed some new questions. The one-way nesting is reviewed and particularly the self-nesting or cascade mode; the potential implication of this mode is explored with a stand-alone forecast experiment and related to the other existing approach employing hemispheric or global variable meshes. One of the strong assets of MC2 is its growing community of users and developers. To demonstrate the wideband characteristic of MC2, that is, its applicability to a large range of atmospheric flows, two very different cases are studied: an Atlantic winter East Coast cyclogenesis (meso-α scale, mostly hydrostatic) and a local (meso-γ scale, partly nonhydrostatic) downslope windstorm occuring over unexpectedly modest topography (Cape Breton Highlands of Nova Scotia, Canada).

Corresponding author address: Dr. Robert Benoit, 5th Floor, 2121 Transcanada Road, Suite 564, Dorval, QC H9P 1J3 Canada.

Email: Robert.Benoit@ec.gc.ca

Abstract

This paper attempts to document the developmental research and early mesoscale results of the new fully nonhydrostatic atmospheric model called MC2 (mesoscale compressible community). Its numerical scheme is the semi-implicit semi-Lagrangian approach conceived and demonstrated by Tanguay, Robert, and Laprise. The dominant effort required to become a full-fledged mesoscale model was to connect it properly to a full-scale and evolving physics package; the enlarged scope of a package previously dedicated to hydrostatic pressure coordinate-type models posed some new questions. The one-way nesting is reviewed and particularly the self-nesting or cascade mode; the potential implication of this mode is explored with a stand-alone forecast experiment and related to the other existing approach employing hemispheric or global variable meshes. One of the strong assets of MC2 is its growing community of users and developers. To demonstrate the wideband characteristic of MC2, that is, its applicability to a large range of atmospheric flows, two very different cases are studied: an Atlantic winter East Coast cyclogenesis (meso-α scale, mostly hydrostatic) and a local (meso-γ scale, partly nonhydrostatic) downslope windstorm occuring over unexpectedly modest topography (Cape Breton Highlands of Nova Scotia, Canada).

Corresponding author address: Dr. Robert Benoit, 5th Floor, 2121 Transcanada Road, Suite 564, Dorval, QC H9P 1J3 Canada.

Email: Robert.Benoit@ec.gc.ca

Save