Hydrostatic Adjustment in Nonhydrostatic, Compressible Mesoscale Models

Dean G. Duffy NASA/Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Dean G. Duffy in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The ability of various numerical techniques used in compressible, nonhydrostatic models to handlehydrostatic adjustment is intercompared. The exact solution of a linearized model of an isothermal, compressible, nonrotating atmosphere is compared against those from finite-differenced versions of the samemodel. For the semi-implicit scheme, the scheme traps acoustic waves near the point of excitation but haslittle effect on gravity waves. The time-splitting scheme captures hydrostatic adjustment well.

Corresponding author address: Dr. Dean G. Duffy, NASA/GoddardSpace Flight Center, Mail Code 912, Greenbelt, MD 20771-0001.

Email: duffy@carmen.gsfc.nasa.gov

Abstract

The ability of various numerical techniques used in compressible, nonhydrostatic models to handlehydrostatic adjustment is intercompared. The exact solution of a linearized model of an isothermal, compressible, nonrotating atmosphere is compared against those from finite-differenced versions of the samemodel. For the semi-implicit scheme, the scheme traps acoustic waves near the point of excitation but haslittle effect on gravity waves. The time-splitting scheme captures hydrostatic adjustment well.

Corresponding author address: Dr. Dean G. Duffy, NASA/GoddardSpace Flight Center, Mail Code 912, Greenbelt, MD 20771-0001.

Email: duffy@carmen.gsfc.nasa.gov

Save
  • Alaylioglu, A., G. A. Evans, and J. Hyslop, 1975: Automatic generation of quadrature formulae for oscillatory integrals. Comput.J.,18, 173–176.

  • Bannon, P. R., 1995: Hydrostatic adjustment: Lamb’s problem. J.Atmos. Sci.,52, 1743–1752.

  • Chen, C., 1991: A nested grid, nonhydrostatic, elastic model usinga terrain-following coordinate transformation: The radiative-nesting boundary conditions. Mon. Wea. Rev.,119, 2852–2869.

  • Cole, J. D., and C. Greifinger, 1969: Acoustic-gravity waves from anenergy source at the ground in an isothermal atmosphere. J.Geophys. Res.,74, 3693–3703.

  • Cullen, M. J. P., 1990: A test of a semi-implicit integration techniquefor a fully compressible non-hydrostatic model. Quart. J. Roy.Meteor. Soc.,116, 1253–1258.

  • Dudhia, J., 1993: A nonhydrostatic version of the Penn State–NCARmesoscale model: Validation tests and simulation of an Atlanticcyclone and cold front. Mon. Wea. Rev.,121, 1493–1513.

  • Evans, G. A., 1993: Numerical inversion of Laplace transforms usingcontour methods. Int. J. Comput. Math.,49, 93–105.

  • Golding, B. W., 1992: An efficient non-hydrostatic forecast model.Meteor. Atmos. Phys.,50, 89–103.

  • Grigor’ev, G. I., N. G. Denisov, and O. N. Savina, 1987: Emissionof acoustic-gravity waves and a Lamb surface wave in an isothermal atmosphere. Radiophys. Quantum Electron.,30, 207–212.

  • Klemp, J. B., and R. B. Wilhelmson, 1978: The simulation of three-dimensional convective storm dynamics. J. Atmos. Sci.,35,1070–1096.

  • Murli, A., and M. Rizzardi, 1990: Algorithm 682: Talbot’s methodfor the Laplace inversion problem. ACM Trans. Math. Software,16, 158–168.

  • Pierce, A. D., 1963: Propagation of acoustic-gravity waves from asmall source above the ground in a isothermal atmosphere. J.Acoust. Soc. Amer.,35, 1798–1807.

  • Skamarock, W. C., and J. B. Klemp, 1992: The stability of time-split numerical methods for the hydrostatic and the nonhydrostatic elastic equations. Mon. Wea. Rev.,120, 2109–2127.

  • Talbot, A., 1979: The accurate numerical inversion of Laplace transforms. J. Inst. Math. Appl.,23, 481–499.

  • Tanguay, M., A. Robert, and R. Laprise, 1990: A semi-implicit semi-Lagrangian fully compressible regional forecast model. Mon.Wea. Rev.,118, 1970–1980.

  • Tao, W.-K., and J. Simpson, 1993: Goddard cumulus ensemble model.Part I: Model description. Terr. Atmos. Oceanic Sci.,4, 35–72.

  • Tapp, M. C., and P. W. White, 1976: A non-hydrostatic mesoscalemodel. Quart. J. Roy. Meteor. Soc.,102, 277–296.

  • Tripoli, G. J., and W. R. Cotton, 1982: The Colorado State Universitythree-dimensional cloud/mesoscale model—1982. Part I: General theoretical framework and sensitivity experiments. J. Rech.Atmos.,16, 185–219.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 89 34 5
PDF Downloads 47 24 1