• Balmaseda, M. A., Anderson, D. L. T., and M. K. Davey, 1994: ENSO prediction using a dynamical ocean coupled to a statistical atmosphere. Tellus,46A, 497–511.

  • Barnett, T. P., M. Latif, N. Graham, M. Flugel, S. Pazan, and W. White, 1993: ENSO and ENSO-related predictability. Part I: Prediction of equatorial Pacific sea surface temperature with a hybrid coupled ocean–atmosphere model. J. Climate,6, 1545–1566.

  • ——, and Coauthors, 1994: Forecasting global ENSO-related climate anomalies. Tellus,46A, 381–397.

  • Barnston, A. G., and C. F. Ropelewski, 1992: Prediction of ENSO episodes using canonical correlation analysis. J. Climate,5, 1316–1345.

  • Blumenthal, M. B., 1991: Predictability of a coupled ocean–atmosphere model. J. Climate,4, 766–784.

  • Bryan, K., and L. Lewis, 1979: A water mass model of the world ocean. J. Geophys. Res.,84, 2503–2517.

  • Cane, M. A., and S. E. Zebiak, 1985: A theory for El Niño and the Southern Oscillation. Science,228, 1085–1087.

  • ——, and ——, 1987: Predictions of El Niño events using a physical model. Atmospheric and Oceanic Variability, H. Cattle, Ed., Roy. Meteor. Soc. Press, 153–182.

  • ——, ——, and S. C. Dolan, 1986: Experimental forecasts of El Niño. Nature,321, 827–832.

  • Chen, D., S. E. Zebiak, A. J. Busalacchi, and M. A. Cane, 1995: An improved procedure for El Niño forecasting. Science,22, 1699–1702.

  • Fennessy, M. J., and J. Shukla, 1991: A comparison of the impact of the 1982–83 and 1986–87 Pacific SST anomalies on time mean prediction of atmospheric circulation and rainfall. J. Climate,4, 407–423.

  • ——, and Coauthors, 1994: The simulated Indian monsoon: A GCM sensitivity study. J. Climate,7, 33–43.

  • Gill, A. E., 1980: Some simple solution for heat induced tropical circulations. Quart. J. Roy. Meteor. Soc.,106, 447–462.

  • Goldenberg, S. B., and J. J. O’Brien, 1981: Time and space variability of the tropical Pacific wind stress. Mon. Wea. Rev.,109, 1190–1207.

  • Goswami, B. N., and J. Shukla, 1991a: Predictability of a coupled ocean–atmosphere model J. Climate,4, 1–22.

  • ——, and ——, 1991b: Predictability and variability of a coupled ocean–atmosphere model. J. Mar. Syst.,1, 271–275.

  • Graham, N. E., and T. P. Barnett, 1995: ENSO and ENSO-related predictability. Part II: Northern Hemisphere 700-mb height predictions based on a hybrid coupled ENSO model. J. Climate,8, 544–549.

  • Harshvardhan, R. Davis, D. A. Randall, and T. G. Corsetti, 1987: A fast radiation parameterization for general circulation models. J. Geophys. Res.,92, 1009–1016.

  • Held, I. M., and I.-S. Kang, 1987: Barotropic models of the extratropical response to El Niño. J. Atmos. Sci.,44, 3576–3586.

  • ——, S. W. Lyons, and S. Nigam, 1989: Transients and the extratropical response to El Niño. J. Atmos. Sci.,46, 163–174.

  • Helfand, H. M., J. C. Jusem, J. Pfaendtner, J. Tenenbaum, and E. Kalney, 1987: The effect of a gravity wave drag parameterization on GLA fourth-order GCM forecasts. NWP Symp. on Short- and Medium-Range Weather Prediction, Tokyo, Japan, World Meteorological Organization/International Union of Geophysics and Geoscience, 4–8.

  • Huang, B., and E. K. Schneider, 1995: The response of an ocean general circulation model to surface wind stress produced by an atmospheric general circulation model. Mon. Wea. Rev.,123, 3059–3085.

  • ——, and J. Shukla, 1997: An examination of the AGCM simulated surface wind stress and low-level winds over the tropical Pacific Ocean. Mon. Wea. Rev,125, 985–998.

  • Ji, M., and A. Leetmaa, 1993: Modes of interannual tropical ocean–atmosphere interaction—A unified view. Part III: Analytical results in fully coupled cases. J. Atmos. Sci.,50, 3523–3540.

  • ——, and A. Kumar, 1994: A multiseason climate forecast system at the National Meteorological Center. Bull. Amer. Meteor. Soc.,75, 569–577.

  • ——, ——, and A. Leetmaa, 1994: An experimental coupled forecast system at the National Meteorological Center: Some early results. Tellus,46A, 398–418.

  • ——, A. Leetmaa, and J. Derber, 1995: An ocean analysis system for seasonal to interannual climate studies. Mon. Wea. Rev.,123, 460–481.

  • ——, ——, and V. E. Kousky, 1996: Coupled model predictions of ENSO during the 1980s and early 1990s at the National Centers for Environmental Prediction. J. Climate,9, 3105–3120.

  • Jin, F.-F., and J. D. Neelin, 1993: Modes of interannual tropical ocean–atmosphere interaction—A unified view. Part I: Numerical results. J. Atmos. Sci.,50, 3477–3503.

  • ——, ——, and M. Ghil, 1994: El Niño on the Devil’s Staircase: Annual subharmonic steps to chaos. Science,264, 70–72.

  • Kinter, J. L., III, J. Shukla, L. Marx, and E. K. Schneider, 1988: A simulation of winter and summer circulations with the NMC global spectral model. J. Atmos. Sci.,45, 2486–2522.

  • Kirtman, B. P., and E. K. Schneider, 1996: Model based estimates of equatorial Pacific wind stress. J. Climate,9, 1077–1091.

  • ——, A. Vernekar, D. DeWitt, and J. Zhou, 1993: Impact of orographic gravity wave drag on extended range forecasts with the COLA-GCM. Atmosphera,6, 3–24.

  • ——, B. Huang, Z. Zhu, J. Shukla, E. K. Schneider, L. Marx, D. DeWitt, M. J. Fennessy, and J. L. Kinter III, 1994: Coupled Predictions at COLA. Proc. 19th Annual Climate Diagnostics Workshop, College Park, MD, Center for Ocean–Land–Atmosphere Studies, 440–443.

  • Kleeman, R., 1993: On the dependence of hindcast skill on ocean thermodynamics in a coupled ocean–atmosphere model. J. Climate,6, 2012–2033.

  • ——, A. M. Moore, and N. R. Smith, 1995: Assimilation of subsurface thermal data into an intermediate tropical coupled ocean–atmosphere model. Mon. Wea. Rev.,123, 3103–3113.

  • Kuo, H. L., 1965: On the formation and intensification of tropical cyclones through latent heat release by cumulus convection. J. Atmos. Sci.,22, 40–63.

  • Lacis, A. A., and J. E. Hansen, 1974: A parameterization for the absorption of solar radiation in the earth’s atmosphere. J. Atmos. Sci.,32, 118–133.

  • Latif, M., and A. Villwock, 1990: Interannual variability as simulated in coupled ocean–atmosphere models. J. Mar. Syst.,1, 51–60.

  • ——, A. Sterl, E. Maier–Reimer, and M. M. Junge, 1993a: Climate variability in a coupled GCM. Part I: The tropical Pacific. J. Climate,6, 5–21.

  • ——, ——, ——, and ——, 1993b: Structure and predictability of the El Niño/Southern Oscillation phenomena in a coupled ocean–atmosphere general circulation model. J. Climate,6, 700–708.

  • ——, T. P. Barnett, M. A. Cane, M. Flugel, N. E. Graham, H. von Storch, J.-S. Xu, and S. E. Zebiak, 1994: A review of ENSO prediction studies. Climate Dyn.,9, 167–179.

  • Leetmaa, A., and M. Ji, 1989: Operational hindcasting of the tropical Pacific. Dyn. Atmos. Oceans,13, 465–490.

  • Mechoso, C. R., and Coauthors, 1995: The seasonal cycle over the tropical Pacific in general circulation models. Mon. Wea. Rev.,123, 2825–2838.

  • Mellor, G. L., and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. Space Phys.,20, 851–875.

  • Miyakoda, K., and J. Sirutis, 1977: Comparative integrations of global spectral models with various parameterized processes of sub-grid scale vertical transports. Beitr. Phys. Atmos.,50, 445–487.

  • Neelin, J. D., 1990: A hybrid coupled general circulation model for El Niño studies. J. Atmos. Sci.,47, 674–693.

  • ——, and F.-F. Jin, 1993: Modes of interannual tropical ocean–atmosphere interaction—A unified view. Part II: Analytical results in the weak coupling limit. J. Atmos. Sci.,50, 3504–3522.

  • Pacanowski, R. C., and S. G. H. Philander, 1981: Parameterization of the vertical mixing in numerical models of tropical oceans. J. Phys. Oceanogr.,11, 1443–1451.

  • ——, K. Dixon, and A. Rosati, 1993: The GFDL modular ocean model users guide, version 1.0. GFDL Ocean Group Tech. Rep. No. 2, 77 pp. [Available from GFDL/NOAA, Princeton University, Princeton, NJ 08542.].

  • Palmer, T. N., G. J. Shutts, and R. Swinbank, 1986: Alleviation of a systematic westerly bias in general circulation and numerical weather prediction model through an orographic gravity wave parameterization. Quart. J. Roy. Meteor. Soc.,112, 1001–1039.

  • Philander, S. G. H., 1990: El Niño, La Niña, and the Southern Oscillation. Academic Press, 293 pp.

  • ——, and R. C. Pacanowski, 1986: A model of the seasonal cycle in the tropical Atlantic. J. Geophys. Res.,91, 14 192–14 206.

  • ——, ——, N. C. Lau, and M. J. Nath, 1992: Simulation of ENSO with a global atmospheric GCM coupled to a high-resolution, tropical Pacific ocean GCM. J. Climate,5, 308–329.

  • Pierrehumbert, R. T., 1987: An essay on the parameterization of orographic gravity wave drag. Geophysics Fluid Dynamics Laboratory/NOAA/Princeton University, 32 pp. [Available from GFDL/NOAA, Princeton University, Princeton, NJ 08542.].

  • Reynolds, R. W., 1988: A real time global sea surface temperature analysis. J. Climate,1, 75–86.

  • Rosati, A., and K. Miyakoda, 1988: A general circulation model for upper ocean simulation. J. Phys. Oceanogr.,18, 1601–1626.

  • Schneider, E. K., and J. L. Kinter III, 1994: An examination of internally generated variability in long climate simulations. Climate Dyn.,10, 181–204.

  • ——, B. Huang, and J. Shukla, 1995: Ocean wave dynamics and El Niño. J. Climate,8, 2415–2439.

  • ——, Z. Zhu, B. Huang, B. Giese, B. P. Kirtman, and J. Shukla, 1997: Annual cycle and ENSO in a coupled ocean–atmosphere general circulation model. Mon. Wea. Rev.,125, 680–702.

  • Tiedtke, M., 1984: The effect of penetrative cumulus convection on the large-scale flow in a general circulation model. Beitr. Phys. Atmos.,57, 216–239.

  • Trenberth, K. E., W. G. Large, and J. G. Olson, 1990: The mean annual cycle in global ocean wind stress. J. Phys. Oceanogr.,20, 1742–1760.

  • Xue, Y., P. J. Sellers, J. L. Kinter III, and J. Shukla, 1991: A simple biosphere model for global climate studies. J. Climate,4, 345–364.

  • Zebiak, S. E., and M. A. Cane, 1987: A model of El Niño and the Southern Oscillation. Mon. Wea. Rev.,115, 2262–2278.

  • Zhu, Z., and E. K. Schneider, 1995: Experimental multi-season ENSO predictions with an anomaly coupled general circulation model. COLA Tech. Rep. 10, 18 pp. [Available from COLA, 4041 Powder Mill Rd., Suite 302, Calverton, MD 20705.].

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 25 25 6
PDF Downloads 14 14 8

Multiseasonal Predictions with a Coupled Tropical Ocean–Global Atmosphere System

View More View Less
  • 1 Center for Ocean–Land–Atmosphere Studies, Institute of Global Environment and Society, Inc., Calverton, Maryland
© Get Permissions
Restricted access

Abstract

The Center for Ocean–Land–Atmosphere Studies anomaly coupled prediction system, using a sophisticated dynamical model of the tropical Pacific Ocean and the global atmosphere, is described. The resolution of the component models is moderate, with the atmospheric spectral model truncated at triangular total wavenumber 30 and 18 vertical levels. The ocean model is a Pacific Basin model with 0.5° latitude and 1.5° longitude resolution in the waveguide and 20 vertical levels. The performance of the uncoupled component models motivates the anomaly coupling strategy and has led to the development of a simple empirical technique for converting the 850-mb zonal wind into a zonal surface stress that is used in the prediction experiments described here. In developing ocean initial conditions, an iterative procedure that assimilates the zonal wind stress based on the simulated sea surface temperature anomaly error is applied. Based on a sample of 78 18-month hindcasts, the predictions have useful skill in the Nino-3 region for at least 12 months. The systematic error of the predictions is shown to be relatively small because the ocean initial conditions are in reasonable equilibrium with the ocean model. Finally, composites of the hindcast warm El Niño–Southern Oscillation (ENSO) events indicate that the model simulates the basic features of ENSO, but there are errors in the horizontal structure of the sea surface temperature anomaly that potentially limit the predictability of the model.

Corresponding author address: Dr. Ben P. Kirtman, Center for Ocean–Land–Atmosphere Studies, Institute of Global Environment and Society, Inc., 4041 Powdermill Road, Suite 302, Calverton, MD 20705-3106.

Email: kirtman@cola.iges.org

Abstract

The Center for Ocean–Land–Atmosphere Studies anomaly coupled prediction system, using a sophisticated dynamical model of the tropical Pacific Ocean and the global atmosphere, is described. The resolution of the component models is moderate, with the atmospheric spectral model truncated at triangular total wavenumber 30 and 18 vertical levels. The ocean model is a Pacific Basin model with 0.5° latitude and 1.5° longitude resolution in the waveguide and 20 vertical levels. The performance of the uncoupled component models motivates the anomaly coupling strategy and has led to the development of a simple empirical technique for converting the 850-mb zonal wind into a zonal surface stress that is used in the prediction experiments described here. In developing ocean initial conditions, an iterative procedure that assimilates the zonal wind stress based on the simulated sea surface temperature anomaly error is applied. Based on a sample of 78 18-month hindcasts, the predictions have useful skill in the Nino-3 region for at least 12 months. The systematic error of the predictions is shown to be relatively small because the ocean initial conditions are in reasonable equilibrium with the ocean model. Finally, composites of the hindcast warm El Niño–Southern Oscillation (ENSO) events indicate that the model simulates the basic features of ENSO, but there are errors in the horizontal structure of the sea surface temperature anomaly that potentially limit the predictability of the model.

Corresponding author address: Dr. Ben P. Kirtman, Center for Ocean–Land–Atmosphere Studies, Institute of Global Environment and Society, Inc., 4041 Powdermill Road, Suite 302, Calverton, MD 20705-3106.

Email: kirtman@cola.iges.org

Save